
Pogamut 3
Lekce 6 – A* + Viditelnost

EVROPSKÝ SOCIÁLNÍ FOND

PRAHA & EU
INVESTUJEME DO VAŠÍ BUDOUCNOSTI



UT2004 bots made easy!

Lecture 6 – A* + Visibility

Faculty of mathematics and physics

Charles University in Prague

4th April 2013



� How to detect that the bot has stuck?

� What if the location is currently 

unreachable?

� TabooSet explained



� To be found in different presentation…



1. Big Picture
2. Visibility abstraction

� Visibility matrix
� Visibility
� this . visibility

3. How to reason about path
� A* and custom map view

� UT2004AStar, IPFMapView<NavPoint>
� this . aStar

4. Hide&Seek Game
� Rules, Map
� HideAndSeekMap

5. Hide&Seek Tournament Announcement







1. Big Picture
2. Visibility abstraction

� Visibility matrix
� Visibility
� this.visibility

3. How to reason about path
� A* and custom map view

� UT2004AStar, IPFMapView<NavPoint>
� this . aStar

4. Hide&Seek Game
� Rules, Map
� HideAndSeekMap

5. Hide&Seek Tournament Announcement



� Visibility class

� Contains precomputed visibility matrix between 

path points and some points on links

� Matrices for competition maps already 

present



kEE ..1

iE

k

i
VS

1=
∨¬=

� How to find the cover?

� Enemies …

� Safe waypoints …



1. Choose target T

2. Others are 

enemies Ei

2. Navpoints target T 

is visible from

TV

3. Navpoints

other enemies Ei

can see

iE

k

i
V

1=
∨

4. Smart place to 

shoot from

iE

k

i
t VV

1=
∨¬∧



� Visibility class
getNearestVisibilityLocationTo(ILocated)

getCoverPointsFrom(ILocated)

getCoverPointsFromN(ILocated…)

getMatrix()

� VisibilityMatrix class

getMatrix()
getNearestIndex(ILocated located)



� To be able to use the visibility matrix, you need to 
have a file with the visibility information 

� Each map has its own file. E.g.

VisibilityMatrix-DM-TrainingDay-all.bin

� Place this file in the root of the project folder of your 
bot

� Get all matrices from svn

svn://artemis.ms.mff.cuni.cz/pogamut/trunk/project/
Main/PogamutUT2004Examples/19-
VisibilityBatchCreator/visibility-matrices



1. Big Picture
2. Visibility abstraction

� Visibility matrix
� Visibility
� this . visibility

3. How to reason about path
� A* and custom map view

� UT2004AStar, IPFMapView<NavPoint>
� this.aStar

4. Hide&Seek Game
� Rules, Map
� HideAndSeekMap

5. Hide&Seek Tournament Announcement



� Agent deliberation cycle

1. Update senses

▪ Some Players have become visible

2. Update percepts

▪ They are all enemies!

3. Reason

▪ Where can I take cover? How can I fallback?

=> Infer new information given the senses / percepts

4. Decide

▪ Inform my team then … should I take cover, fallback or attack?

5. Take action



� Remembering Dijkstra’s alg?

� Roughly speaking…

Nodes = {start}
while (!nodes.empty) {

Node = pick_shortest_path(nodes)
if (Node == Target) return

reconstruct_path(Node)
Nodes = Nodes \ Node
Expand(Node, Nodes)

}









� A* trick

� Roughly speaking…

Nodes = {start}
while (!nodes.empty) {

Node = pick_the_most_promising (nodes)
if (Node == Target) return

reconstruct_path(Node)
Nodes = Nodes \ Node
Expand(Node, Nodes)

}











� A* heuristic function must be… ?

1. Admissible for correctness

▪ Do not over-estimate the path-cost

2. Consistent == Monotone (for efficiency)

▪ “triangle inequation”

� Blah! Let’s hack it!

� What if we impose additional COST to some nodes 

or links?



� Len(path) … path length
� min-Len-Path(N,M) … shortest path between Nand M
� B … bad node/link B
� EB … extra cost visiting/traversing B
� Cost(path) … path cost (based on Len(path) ) including EB
� min-Cost-Path(N,M) … the least cost path between N

and M

� What P-Len(N,M) and P-Cost(N,M) look like?

1. P-Len(N,M) == P-Cost(N,M)
▪ There does not exist other path p(N,M) not-including Bsatisfying

Len(p(N,M)) < Len(P-Len(N,M)) + EB

2. P-Len(N,M) != P-Cost(N,M)
▪ We have found Len- longer path that does not traverse B satisfying

Len(P-Cost(N,M)) < Len(P-Len(N,M)) + EB



� Example map



� Start-node



� Target-node



� Shortest path



� Adversary we want to avoid



� Let’s rise the NODE cost … is it enough?



� No…



� Rise the NODE cost again…  enough now?



� Here you go!

� Why was this path found?



� Adding important heuristic costs

� So, are we cheating or not?



� Combine it with enemy position!
� extra cost = 500 / distance-to-enemy

� Combine it with Visibility class!
� boolean Visibility.isVisible(ILocated, ILocated)

� Combine both enemy position and the visibility!

� Combine with already-found path + fwMap and 
find different paths!

� Play with the cost iteratively
� Different path not found? Ok, just rise the cost…

� Does different path even exist?
=> Try to “forbid” some node/link completely



� UT2004AStar
this . aStar .findPath( from, to, IPFMapView );

� Implement your own custom IPFMapView :

new IPFMapView<NavPoint>() {

public int getNodeExtraCost(NavPoint node, int mapCost) {}

public int getArcExtraCost(NavPoint nodeFrom, NavPoint nodeTo, int mapCost) {}

public Collection<NavPoint> getExtraNeighbors(NavPoint node, 
Collection<NavPoint> mapNeighbors) {}

public boolean isNodeOpened(NavPoint node) {}

public boolean isArcOpened(NavPoint nodeFrom, NavPoint nodeTo) {}
}



1. Big Picture
2. Visibility abstraction

� Visibility matrix
� Visibility
� this . visibility

3. How to reason about path
� A* and custom map view

� UT2004AStar, IPFMapView<NavPoint>
� this . aStar

4. Hide&Seek Game
� Rules, Map
� HideAndSeekMap

5. Hide&Seek Tournament Announcement



� Custom “game-mode” for UT2004

� Two roles: 

1. Seeker (having “it”)

2. Runner

� Seeker has to find runners and then get home (safe 

point) first to “capture them”

� Runners have to make it home (to safe point) 

before Seeker
� this.hide agent module

� Custom map: DM-HideAndSeekMap



� One match = 3 games of 10 rounds each of hide and 
seek with fixed seeker for each game
� 1 round = 60 seconds (first 8 seconds hide time, next 5 

seconds restricted safe area time)

� Spotting 
� Seeker “spots” runner when he sees him for at least 600 

ms (cca “two logic() ticks”)

� Seeker is spawned into the map after first 8 seconds 

� Safe area
� Runners are not allowed to dwell around safe point for 

certain amount of time at the beginning of the game (5 
seconds)



� Scoring RUNNER
� Runner captured by seeker -10

� Runner fouled (went into safe area before timeout) -1000

� Runner made it to safe area before seeker 150

� Runner survived round (haven’t been captured by seeker) 50

� Scoring SEEKER
� Seeker captured runner (spotted + made it to s. a. first) 250

� Runner spotted 50

� Runner escaped (made it to safe area before seeker) -20

� Runner survived (neither of them made it to safe area) -10



� DM-HideAndSeekMap



1. Big Picture
2. Visibility abstraction

� Visibility matrix
� Visibility
� this . visibility

3. How to reason about path
� A* and custom map view

� UT2004AStar, IPFMapView<NavPoint>
� this . aStar

4. Hide&Seek Game
� Rules, Map
� HideAndSeekMap

5. Hide&Seek Tournament Announcement



� 3 bots

� 1 Seeker, 2 Runners

� Random groups, Fixed map

� Fixed Seeker - 3 matches per group

� Only bots submitted until Friday 19.4.2013, 

23:59 will participate

� No shooting allowed, no bot speed 

reconfigurations allowed, no manual 

respawns allowed



� Create Hide&Seek Bot

� Implement both Seeker and Runner

� Tournament  will be played on a different map, 

so we do not recommend using “static” 

information e.g. run to [1000,200,100] ☺

� To run the hide and seek match launch 

HideAndSeekGame class!

� For the tournament name the bot with your 

name in getInitializeCommand() method



Via e-mail:
� Subject

� “Pogamut homework 2013 – Assignment X”
� Replace ‘X’ with the assignment number and the subject has to be without 

quotes of course
� …or face -2 score penalization

� To
� jakub.gemrot@gmail.com

� Jakub Gemrot (Monday practice lessons)
� michal.bida@gmail.com

� Michal Bída (Thursday practice lessons)

� Attachment
� Completely zip-up your project(s) folder except ‘target’ directory and IDE 

specific files (or face -2 score penalization)
� Body

� Please send us information about how much time it took you to finish the 
assignment + any comments regarding your implementation struggle
� Information won’t be abused/made public
� In fact it helps to make the practice lessons better

� Don’t forget to mention your full name! 



� We do not own the patent of perfection (yet…)

� In case of doubts about the assignment, 

tournament or hard problems, bugs don’t 

hesitate to contact us!

� Jakub Gemrot (Monday practice lessons)

� jakub.gemrot@gmail.com

� Michal Bída (Thursday practice lessons)

� michal.bida@gmail.com



DĚKUJI ZA POZORNOST


