
Pogamut 3
Lekce 8 – BOD, yaPOSH a DeathMatch

EVROPSKÝ SOCIÁLNÍ FOND

PRAHA & EU
INVESTUJEME DO VAŠÍ BUDOUCNOSTI

UT2004 bots made easy!

Lecture 8 – BOD, yaPOSH & DeathMatch

Faculty of Mathematics and Physics
Charles University in Prague
18th April 2013

� Fill the short test for this lessons

� 6 minutes limit

� http://alturl.com/varvy

� https://docs.google.com/forms/d/1zWwXQutLf1GFI7gEIze
kPLXixI3EIwqivF-aPB_VeEo/viewform

� Rezervované termíny v SW1
� 20. 5.2013 – 9:00-15:40

� Termín OK

� 23.5.2013 – 9:00-15:40

� TODO…

� Zkouška bude cca 3-4 hodiny kódění + 30 minut vyplňování
dotazníků + 5 minut „pokec, s vámi“

� Máte čas?

private Item runningFor = null;
private boolean runningForPicked = false;

@EventListener(eventClass = ItemPickedUp.class)
protected void itemPickedUp(ItemPickedUp event) {

if (runningFor == null) return;
if (event.getId() == runningFor.getId()) {

runningForPicked = true;
}

}

1. Big Picture

2. BOD (Behavior Oriented Design)
3. Gentle POSH introduction
4. Weapons & Shooting
5. DeathMatch Bot

1. Big Picture
2. BOD (Behavior Oriented Design)

3. Gentle POSH introduction
4. Weapons & Shooting
5. DeathMatch Bot

� BOD (Behavior Oriented Design)
� A methodology for developing control of

complex intelligent agents
▪ virtual reality characters, humanoid robots or

intelligent environments…

� Combines the advantages of Behavior-
Based AI and Object Oriented Design.

� Authored by Joanna J. Bryson
� http://www.cs.bath.ac.uk/~jjb/web/bod.html

Behavior Oriented Design
by Joanna J. Bryson (UK)
http://www.cs.bath.ac.uk/~jjb/web/bod.html

1. Specify top-level decision
a) Name the behaviors that the bot should do

b) Identify the list of sensors that is required to perform
the behavior

c) Identify the priorities of behaviors

d) Identify behavior switching conditions
2. Recursion on respective behaviors until

primitive actions reached

1. State the goal of you agent behavior
� E.g. It will be a Deathmatch bot

2. Brainstorm what it will mean to fulfill the behavior goal
� E.g. fight players, gather items

3. Think about conditions that should be fulfilled for the
respective behaviors

� E.g. I’ll fight only when I see enemy and have proper weapon

4. Revise, revise, revise
� Oh wait, what if I don’t have the proper weapon, I should add a behavior to

flee from fight and gather some weapon.

5. Pick one of the specified top level behaviors and apply
recursion from point 1!

6. When you end up with sufficiently simple and clear defined
sense/action – NAME IT WELL, implement it and test it!

Recursion == Iterative development
1. Select a part of the plan to extend next.
2. Extend the agent with that implementation

� Extend the plan, code actions and senses

� Test and debug that code (!!!)

3. Revise the current specification.

� Name the behaviors (functions) logically!
� Good method name is better than documentation!

� Reduce code redundancy
� Use copy past with caution or not at all!

� Avoid Complex Conditions
� The shorter condition, the better the understanding

� Avoid Too Many If-then rules at one level
� One level of decision making usually needs no more

than 5 to 7 if-then rules, they may contain fewer..
� When in doubt, favor simplicity.

1. Big Picture
2. BOD (Behavior Oriented Design)
3. Gentle POSH introduction

4. Weapons & Shooting
5. DeathMatch Bot

� yaPOSH
� yet-another Parallel-rooted, Ordered Slip-stack Hierarchical

planner

� To put it simply:
� a reactive planner working with FIXED, PRE-SET plans

� To put it even simpler:
� a tool enabling to specify if – then rules with priority in a tree

like structure

� Advantage:
� Makes you think about the behavior in human terms more

than the code

� Actions and Senses

� if (sense) then (action)

� Drive Collection (DC)

� First level of if-then rules

� Competence (C)

� Second – Nth level of if-then rules

� Action Patterns (AP)

� Specifies N actions that will be performed in a
sequence

DriveCollection(
1. if (sense1()) then competence1(); return;
2. if (sense2()) then competence2(); return;
3. if (sense3()) then action-pattern1(); return;
4. if (sense4()) then competence3(); (

1. if (sense5()) then action1(); return;
2. if (sense6()) then competence4(); return;
3. if (sense7()) then action2(); return;
4. if (sense8()) then action-pattern(); return;
5. return;

)
)

ActionPattern(
while (!action1-finished()) {action1();};
while (!action2-finished()) {action2();};
while (!action3-finished()) {action3();};

)

� Senses

� Represent condition (Do I see a player?)

� Return basic types

▪ Boolean, Integer, Double, String, …

� Can be queried either as ==, !=, >, <, <= or >=

� E.g.

▪ cz.cuni.attackbot.FlagIsVisible false !=

� How to make a new sense?

� There are no templates yet…

� In NetBeans:

� Right click on some existing sense,

� Right click the Java class and select refactor and Copy
it with a new name

� Change the sense description and human readable
name in the annotation before the class declaration

� In POSH editor click Refresh button in the Senses
editor

� Actions

� Represent an action in the environment

� Are expected to return:

▪ FINISHED (an action has been finished successfully),

▪ RUNNING (an IVA action is still being executed within
the environment),

▪ FAILED (an action execution has failed).

� Have three methods – init(), running(), done()

� How to make a new action?

� There are no templates yet…

� In NetBeans:

� Right click on some existing action,

� Right click the Java class and select refactor and Copy
it with a new name

� Change the action description and human readable
name in the annotation before the class declaration

� In POSH editor click Refresh button in the Senses
editor

� Are created by drag and dropping from POSH

editor from the tabs at the right side of IDE

� Every POSH action and sense has context

(this.ctx) that contains all Pogamut modules.

� Context is an editable class that is a part of

your POSH bot sources, e.g.

AttackBotContext

� You may use context to store some variables,

e.g. Item you are going for or player you are

going to fight

� Competences, action patterns, actions and senses can be

parameterized

� Enables drag and drop

� Select action or sense you want to add or change from

the editor and drag and drop it at desired place

� Double clicking POSH graphical element open

editor, right clicking opens element menu

� Support “Go to source”, breakpoints and debugging

� Breakpoints PAUSE the bot AND the environment

� Run the bot in Debug mode (right click the project,

select Debug)

� In the Debug toolbar, click the green circle button

to enable POSH plan debugger

� A window with Debugger appears:

1. Big Picture
2. BOD (Behavior Oriented Design)
3. Gentle POSH introduction
4. Weapons & Shooting
▪ http://planetunreal.gamespy.com/View.php?view=UT2004GameI

nfo.Detail&id=26

5. DeathMatch Bot

� this. weaponry
� All you wanted to know about UT2004 weapons but

were afraid to ask
� Note that it contains also some obsolete and to-be-

deprecated methods…
weaponry .getCurrentWeapon()
weaponry .hasWeapon(ItemType)
weaponry .hasLoadedWeapon()
weaponry .hasPrimaryLoadedWeapon()
weaponry .hasSecondaryLoadedWeapon()
weaponry .getLoadedWeapons()
weaponry .changeWeapon()
…

� Weapons’ effectiveness depends on distance to target
� Thus you should create different priority list for various

“ranges”

� Wrapped in class weaponPrefs
weaponPrefs.add General Pref(ItemType.MINIGUN, true);
weaponPrefs.add General Pref(ItemType.LINK_GUN, false);

� true -> primary firing mode
� false -> secondary firing mode
weaponPrefs.newPrefs Range(CLOSE_COMBAT_RANGE = 300)

.add(ItemType.FLAK_CANNON, true)

.add(ItemType.LINK_GUN, true); // 0-to-CLOSE
weaponPrefs.newPrefs Range(MEDIUM_COMBAT_RANGE = 1000)

.add(ItemType.MINIGUN, true)

.add(ItemType.ROCKET_LAUNCHER, true); // CLOSE-to-ME DIUM

� If range prefs fails, general are used
� You have to experiment! (== behavior parametrization!)

More at: http://pogamut.cuni.cz/pogamut_files/latest/doc/tutorials/10-HunterBot.html

� Shooting with WeaponPrefs is easy!

Player enemy =
players .getNearestVisiblePlayer();

shoot .shoot(weaponPrefs, enemy);

shoot .shoot(weaponPrefs, enemy,
ItemType.ROCKET_LAUNCHER);

// do not use rocket launcher

shoot .setChangeWeaponCooldown(millis);

� Sometimes you need to perform the behavior
“once in a time” => Cooldown

Cooldown rocketCD = new Cooldown(2000);
// millis

if (rocketCD. isCool()) {
rocketCD. use() ;
shoot .shoot(weaponPrefs, enemy);

} else {
shoot .shoot(weaponPrefs, enemy,
ItemType. ROCKET_LAUNCHER);

}

� Sometimes you need to pursue some behavior for a
while => Heatup

Heatup pursueEnemy = new Heatup(3000);
// millis

if (players.canSeeEnemy()) {
pursueEnemy. heat() ;
// fight the enemy

} else
if (pursueEnemy. isHot()) {

// pursue the enemy
} else {

// collect items
}

1. Big Picture
2. BOD (Behavior Oriented Design)
3. Gentle POSH introduction
4. Weapons & Shooting
5. DeathMatch Bot

� Its all about movement on the map

� Picking the right place to be at

� Picking the right item to go for

� Knowing when it is worth to change the
behavior

� I am almost at the rocket launcher, but I see
enemy player. Will I go for the weapon or start
fighting with the player?

� Using proper weapon in proper situations
� this . weaponPrefs …

� Knowing how to move in combat
� Strafing, dodging, jumping

� Maintaining distance according bot current
weapon

� Facing one direction and move elsewhere
(navigation.setFocus(…))

� Beware that jumping and dodging reduces
bot accuracy!

� Create DeathMatchBot in POSH
� That arms himself and is able to fight an

opponent
� Does not stuck (for long).

� Access Pogamut modules from POSH actions and senses!
� this . ctx .getItems().getSpawnedItems(ItemType.Categor

y. WEAPON)
� MyCollections.getFiltered(Collection, new

IFilter<Item>() {…})

� Handling unreachable items:
� this . ctx .getNavigation().addStrongNavigationListener

(…STUCK_EVENT…)
� myTabooSet.add() & myTabooSet.filter(…)

� Specifying weapon preferences:
� this . ctx .getWeaponPrefs().addGeneralPref(ItemType. FLAK_CAN

NON, true)
.addGeneralPref(ItemType. ROCKET_LAUNCHER, true);

� We do not own the patent of perfection (yet…)

� In case of doubts about the assignment,
tournament or hard problems, bugs don’t
hesitate to contact us!

� Jakub Gemrot (Monday practice lessons)
� jakub.gemrot@gmail.com

� Michal Bída (Thursday practice lessons)
� michal.bida@gmail.com

DĚKUJI ZA POZORNOST

