OPP

QA

OPERACNI PROGRAM PRAHA
ADAPTABILITA

EVROPSKY SOCIALNI FOND

Pogamut 3
Lekce 9 — BOD, yaPOSH a DeathMatch

INVESTUJEME DO VASI BUDOUCNOSTI

PRA HA
PRA GUE
PRA GA
PRA G

*
EVROPSKA UNIE

Faculty of Mathematics and Physics
Charles University in Prague
25" April 2013

UT2004 bots made easy!

Pogamut 3

Lecture g — BOD, yaPOSH & DeathMatch

Fill the short test for this lessons

6 minutes limit
http://alturl.com/tgbdx

https://docs.google.com/forms/d/azoHvtPuorVkD
awkpTgDM7NEywij7RoriUxpHBfoiyaM/viewfor

m

NAIL0o68 Exam

Reserved SWa for:
Monday 20. 5.2013 — 9:00-15:40
Thursday 23.5.2013 — 9:00-15:40

Exam will last cca 3-4 hours (coding) + 30 minut
questionnaires filling + 5 minut ,,informal chat"

Do the time and date suit you?

Today’s menu

Big Picture

BOD (Behavior Oriented Design)
Gentle yaPOSH introduction
Weapons & Shooting
DeathMatch Bot

Big Picture

Already covered

2 : 5 . . NDUSTRY STATE OF
NPC component /NPC Layer/ Simulation || Low-level reasoning || High-level reasoning
Game Engine
High . NPC
A Annotatlons BT, HTN, FSM, STRIPS (FEAR
9 ‘ i : : :
% Data filters for DGClSlOﬂ / : : teerings (Reynolds),
E human like inpu i : : RVO, ORCA
g - Memory [State / Behavior / ‘ : ;
5 4 - : :'
© S~ Body | Affects | ,/ ; :
K<) ~ ~2io \
AN - _- ---------- > QNavigation :
T~ ->]___ Locomotion
Synchronous T\ [Animation Sel.| Path Following
! execution ‘> Animation
Low < >
Input < e o > Qutput
Environment, body state changes Body actions
Game mechanics, Physics, Animation, Rendering

Big Picture

NPC component /NPC Layer/ Simulation || Low-level reasoning || High-level reasoning

WDUSTRY STATE OF
THE ART

Fﬂ?h

Information abstraction

Low

notations
)

Data filters for
human like input

BT, HTN, FSM, STRIPS (FEAR
BlackBoard, key-value =) "

Hierarchical A*

{0

7

teerings (Reynolds),
RVO, ORCA

a

N Locomotion

\ Animation Sel.l Path Following

Synchronous
execution

Animation

{

Input <
Environment, body state changes

Data flow

.
>

Body actions

Output

Game mechanics, Physics, Animation, Rendering

-

Game Engine
NPC

Today’s menu

Big Picture

BOD (Behavior Oriented Design)
Gentle yaPOSH introduction
Weapons & Shooting
DeathMatch Bot

Behavior Oriented Design

Methodology

BOD (Behavior Oriented Design)

A methodology for developing control of
complex intelligent agents

virtual reality characters, humanoid robots or
intelligent environments...

Combines the advantages of Behavior-
Based Al and Object Oriented Design.

Authored by Joanna J. Bryson
http://www.cs.bath.ac.uk/~jjb/web/bod.html

How to think?

Intelligence by design

Behavior Oriented Design

by Joanna J. Bryson (UK)
http://www.cs.bath.ac.uk/~jjb/web/bod.html

Specify top-level decision
Name the behaviors that the bot should do

Identify the list of sensors that is required to perform
the behavior

Identify the priorities of behaviors

Identify behavior switching conditions
Recursion on respective behaviors until
primitive actions reached

Behavior Oriented Design

BOD in human language

State the goal of you agent behavior
E.g. It will be a Deathmatch bot
Brainstorm what it will mean to fulfill the behavior goal
E.g. fight players, gather items
Think about conditions that should be fulfilled for the
respective behaviors
E.g. I'll fight only when | see enemy and have proper weapon
Revise, revise, revise

Oh wait, what if don’t have the proper weapon, | should add a behavior to
flee from fight and gather some weapon.

Pick one of the specified top level behaviors and apply
recursion from point 1!

When you end up with sufficiently simple and clear defined
sensef/action — NAME IT WELL, implement it and test it!

Behavior Oriented Design

Iterative Development

Recursion == Iterative development
Select a part of the plan to extend next.
Extend the agent with that implementation

Extend the plan, code actions and senses

Test and debug that code (!!!)
Revise the current specification.

Behavior Oriented Design

Revising BOD Specifications

Name the behaviors (functions) logically!
Good method name is better than documentation!

Reduce code redundancy
Use copy-paste with caution or not at all!

Avoid Complex Conditions
The shorter condition, the better the understanding

Avoid Too Many If-then rules at one level

One level of decision making usually needs no more
than 5 to 7 if-then rules, they may contain fewer...

When in doubt, favor simplicity

Practice Lesson

Outline

Big Picture

BOD (Behavior Oriented Design)
Gentle yaPOSH introduction
Weapons & Shooting
DeathMatch Bot

yaPOSH

Introduction

yaPOSH

yet-another Parallel-rooted, Ordered Slip-stack Hierarchical
planner

To put it simply:
a reactive planner working with FIXED, PRE-SET plans

To put it even simpler:

a tool enabling to specify if — then rules with priority in a tree
like structure

Advantage:

Makes you think about the behavior in human terms more
than the code

yaPOSH

Primitives

Actions and Senses

if (sense) then (action)
Drive Collection (DC)

First level of if-then rules
Competence (C)

Second — Nth level of if-then rules
Action Patterns (AP)

Specifies N actions that will be performed in a
sequence

eeeeeeeeeeeee

yaPOSH

Plan structure (Java glasses)

DriveCol | ecti on(

1. if (sensel()) then conpetencel(); return;
2. if (sense2()) then conpetence2(); return;
3. if (sense3()) then action-patternl(); return;
4. if (sense4()) then conpetence3(); (
1. if (sense5()) then actionl(); return;
2. It (sense6()) then conpetence4(); return;
3. if (sense7()) then action2(),; return;
4. it (sense8()) then action-pattern(); return;
5. return;
)
)
ActionPattern(
while ('actionl-finished()) {actionl1(); return;}
while ('action2-finished()) {action2(); return;}
while ('action3-finished()) {action3(); return;}

yaPOSH

Plan structure (the real)

{
{Z attack-behavior
{
{ (need-ammo cz.cuni.attackbot.PickItems))
{ (3ee-no-enemy cz.cuni.attackbot.FindEnemy))
{{attack cz.cuni.attackbot.ShootPFlayer))
)
)
{ life
{

{{attack-enemy-player | {{cz.cuni.attackkot.SeePlayer))) cz.cuni.attackkbot.ShootPlayer))
{{default cz.cuni.attackbot.PickItems))

)
)
)

Shoot the player

Pick items

Senses
Represent condition (Do | see a player?)

Return basic types
Boolean, Integer, Double, String, ...

Can be queried either as ==, 1=, >, <, <= or >=
E.g. cz.cuni.attackbot.FlaglsVisible false !=

Can be parameterized:
MySense extends ParamsSense<BOT_CONTEXT>

public void querry(@Param(“SmyParameter”) String myParameter) { ... }
cz.cuni.attackbot.MySense(SmyParameter = “string-value”) false !=

Rename... Alt+Shift+R

: [52 cuni. attackbot
Move.., Alt+Shift+V -~
Flag.java Copy... :
Safely Delete.., Alt+Delete
a a Inline.. Alt+Shift+1
g Change Method Parameterz., Alt+Shift+C
2. Full Up...
Senses || - New Sense e S
Extract Interface...
ut Ctil+X
Extract Superclass...
o Ctrl+C -
Sles Use Supertype Where Possible...
How to make a new sense:
or &1: Debug Test File
i Profile Test File
There are no templates yet et
LN £ SeePlayer(attac s
o query() : Boolez Delete Delete

Save As Template...

In NetBeans:

Refactor) Inspect and Transform...
WS UrrrsmETEFE

e Taw e T S a T F TS

Right click on some existing sense,

Right click the Java class and select refactor and Copy
it with a new name

Change the sense description and human readable
name in the annotation before the class declaration

@PrimitiveInfo (name = , description = i
public class SeePlayer extends ParamsSense<AttackBotContext, Boolean> |

In POSH editor click Refresh button in the Senses
editor

yaPOSH

Senses lll - Parameterized sense example

EPrimitiveInfo({name = "sesFlayer™, deacription = "Do I s=e a player:")

Fublic class SeePlayer extends Params3ense<AttackBotContext, Boolean> |

public SeePlayer (AttackBotlontext ctx) |
super({ctx, Boolean.class):

public Boolean query (BParam("stype") String type) |

return this.getCtx().getPlayera() .canSeefFriends();

elae
return this.getCtx().getPlayers() .canSeeEnemies();

}
N - o

Jump

Do nothing Jump

Do nothing

yaPOSH

Actions |

Actions
Represent an action in the environment
Have three methods — init(), run(), done()

Selected

action [RUN] [RUN] [RUN] [TAKE] [FIGHT] [FIGHT]

Methods
oy RUN.done() TAKE.done()

executed ';ldm"r’:;tn(()) RUN.run() RUN.run() TAKE.init() FIGHT.init() FIGHT.run()
' TAKE.run() FIGHT.run()

Can be parameterized
need to extend ParamsAction<BOT_CONTEXT>

Parameters passed to init() method, define them with
annotation:

public void init(@Param(“Starget”) String target) { ... }

yaPOSH

Actions |

Actions are expected to return their “state” in the run()
method — to notify yaPOSH

RUNNING

Action says, | am still running and | want to run in next cycles as well
RUNNING_ONCE

Actions says, | want to be executed for one logic iteration and then |
am done

FINISHED

Action says, | am FINISHED and DONE.

This triggers yaPOSH to “replan” — to search for new action -
IMMEDIATELLY! (without waiting for the next update from the
environment) See next slides for caveats!

Can be used to implement pure ,mental™ actions ~ “altering internal
state only” action

FAILED
An action execution has failed

This triggers yaPOSH to “replan” - to search for new action -
IMMEDIATELLY!

yaPOSH

Actions lll - yaPOSH action selection

POSH searches for next action to execute as
long as it finds one

This means if your plan doesn’t return any
action (no sense matches), the POSH will re-
evaluate immediately!

And will be stuck in infinite loop!
Your POSH plan should ALWAYS return action!

The best way is to have default sense with action

doNothing at the bottom of the plan!
E.g.: __’canseeaplaver

Shoot the player

Do nothing

yaPOSH

Actions IV - FINISHED

Action returning in run() method FINISHED tells POSH to re-
evaluate plan immediately to search for a new action

This can be used to your advantage (parallel actions), but has a
caveat!

Consider plan, where StopShooting returns FINISHED in run()

immediately: pEE——— 5w

StopShooting

Do nothing

Makes sense, because as we send stop shoot command in init(), the
action is done...

The problem is that the POSH re-evaluates the plan immediately to
search for a new action and guess what it finds? StopShooting again.
Why?
Because isShooting sense will be returning the same value it was before! The
environmental state is not changed. The POSH re-evaluates immediately! We

are stuck in infinite loop and no more environmental updates will ever come
(even at first glance no exceptions raised).

For these types of actions always return RUNNING_ONCE !

yaPOSH

Actions V — Parallel Actions

Returning FINISHED in run() method can be used to your
advantage if you are careful enough.
Lets say you want to execute two actions in parallel.

Create an action-pattern (drag and drop from action pattern
tab)

Add the actions you want to execute in parallel (in our example
StopShooting and Jump). They will be returning FINISHED in
run() to trigger immediate POSH re-evaluation

Add one more dummy action to the end of action pattern
returning RUNNING_ONCE (to stop POSH plan re-evaluation —
otherwise we would be stuck in infinite loop again)

Done! You have now action pattern executing two actions in

I
para ||€| " | StopShoot-and-jump StopShooting
E Jump

DummyRunOnce

Rename... Alt+Shift+R

yaPOSH = ==
Actions VI — New Action D
How to make a new action? == .
There are no templates yet... == =

Save As Template...

In NetBeans:

Refactor) Inspect and Transform...
WS UrrrsmETEFE

e Taw e T S a T F TS

Right click on some existing action,

Right click the Java class and select refactor and Copy
it with a new name

Change the action description and human readable
name in the annotation before the class declaration

EFrimitiveInfo (name= , description= i
public class ShootPlayer extends ParamsAction<AttackBotlontext> |

In POSH editor click Refresh button in the Senses
editor

yaPOSH

Actions VIl — Parameterized Action Example

@PrimitiveInfo (name="5tartShooting™, description="S5Shoot the player.™)
public class ShootPlayer extends ParamsAction<AttackBotlontext> |

public ShootPlayer (AttackBotlConteXxt ctx) |

super {ctx) »
}
public woid init (@Param("stype") String type) |
if (type.contentEquals("Ifrisnd™))
ctx.getShoot () .shoot (ctx.getPlayers() .getHearestVisibleFriend ()) s
else
ctx.getShoot () .shoot {(ctx.getPlayers() .getlearestVisibleEnemy ()) ;7
}

public RctionBesult run{) |
return AotionResult. RUNNINY

public void done() {

1

$type="enemy" jtype="enemy"

StartShooting
$type="enemy"

Do nothing Do nothing

cz.cuni.attackbot.ShootPlayer{Stype = 'enemyl"}l

yaPOSH

New Action Pattern, New competence

Are created by drag and dropping from POSH
editor from the tabs at the right side of IDE

Competences | Action patterns | Actions | Senses

Type name of primitive:

Refresh | | Delete |

Primitives Found:

Mew competence (drag and drop)
(C attadk-behavior (elements{{need-ammo (trigger ({cz.cuni.attackbot, Ammo 0 ==))

yaPOSH Context

How to access Pogamut modules?

Every yaPOSH action and sense has context
(this.ctx) that contains all Pogamut modules.
Context is an editable class that is a part of
your yaPOSH bot sources, e.g.

AttackBotContext
You may use context to store some variables,

e.g. Iltem you are going for or player you are
going to fight

yaPOSH

Parameters

Competences, action patterns, actions and senses can be
parameterized

(@PrimitiveInfo (name = ;
(go-to-flag description =)
(Starget="enemy") public class FlagVisible
(bot.TurnToFlag (Steamname=S$target) extends FlagSense<AttackBotContext,Boolean>
bot.GoToFlag ($team=$target) {
) public Boolean query (
) @Param() String teamname
) A
(life FlagInfo flag = getFlagInfo (teamname) ;

(return flag.isVisible():

(pickup-our-flag

(@PrimitiveInfo (name = .
(description =)

(bot.FlagState ($teamname="our") public class TurnToFlag
"drc - extends FlagAction<AttackBotContext> {
(bot.FlagIsVisible (Steamname="our"))
)) public ActionResult run|(
go-to-flag($target="our") GParam|() String teamName

) FlagInfo flag = getFlagInfo (teamName) ;
) ctx.getMove () .turnTo(flag.getLocation()):

) return ActionResult.RUNNING ONCE;

yaPOSH

POSH Editor

Enables drag and drop r——

Select action or sense you want to add or change from
the editor and drag and drop it at desired place
Double clicking POSH graphical element open
editor, right clicking opens element menu
Support “Go to source”, breakpoints and debugging
Breakpoints PAUSE the bot AND the environment

EngineSelection Window 1| ut2004-20-sposh-attackbot/AttackBot1 EEBE

attadéﬁo;.iap_*- fz"' !
IV:sual Text Create sense s flag on ground . sﬂag visible
- eamname=" ' eamname="
urn to ria;
="enemy” : 5
int

State of flag=="dropped™ —» Is flag visible

$teamname="our" $teamname="our" fgo-to-ﬂag
go-to-flag Turn to flag
$target="our $teamname="our"

Sary

Go to flag I’\‘? dd act

$team="our"

a Add action
Delete action faigeis enemy
W— Can see flag holder
piekipenemytag I~ s flag on ground - l§fiag visible EEEEE T - e
$teamname="enemy" $teamname="enemy"
$target="enemy" $teamname="enemy"
rget="enemy” — Shoot holder ofﬂag

$team="our"

yaPOSH

How to run POSH plan debugger

Run the bot in Debug mode (right click the project,
select Debug)
In the Debug toolbar, click the green circle button

to enable POSH plan debugger
LI Lu,J K I_D |> ®

1

A window with Debugger appears:

EngneSelection Window | ut2004-20-sposh-attackbot/AttadBot] | ==
|iEnaineSelection Window =
=" e
'go-to-flag | Tumntoflag
$teamname="enemy" [t\} Add single breakpoint

$target="enemy"

Add permanent breakpoint
Remove breakpoint

arget="enemy"
$teamname="our"
attack-enemy-flag-holder _ Ammo>10

Shoot holder of flag
$team="our"

Today’s menu

Big Picture

BOD (Behavior Oriented Design)
Gentle yaPOSH introduction
Weapons & Shooting

http://planetunreal.gamespy.com/View.php?view=UT2004Gamel
nfo.Detail&id=26

DeathMatch Bot

Weapons & Shooting

Weaponry class

this. weaponry

All you wanted to know about UT2004 weapons but
were afraid to ask

Note that it contains also some obsolete and to-be-
deprecated methods...

weaponry .getCurrentWeapon()

weaponry .hasWeapon(ltemType)
weaponry .hasLoadedWeapon()
weaponry .hasPrimaryLoadedWeapon()
weaponry .hasSecondaryLoadedWeapon()
weaponry .getLoadedWeapons()
weaponry .changeWeapon()

Weapons & Shooting

WeaponPreferences

Weapons' effectiveness depends on distance to target
Thus you should create different priority list for various
“ranges”

Wrapped in class weaponPrefs

weaponPrefs.add General Pref(ltemType.MINIGUN, true);
weaponPrefs.add General Pref(ltemType.LINK _GUN, false);

true -> primary firing mode
false -> secondary firing mode

weaponPrefs.newPrefs Range(CLOSE_COMBAT_RANGE = 300)
.add(ltemType.FLAK_CANNON, true)
.add(ltemType.LINK_GUN, true); // 0-to-CLOSE

weaponPrefs.newPrefs Range(MEDIUM_COMBAT_ RANGE = 1000)
.add(ltemType.MINIGUN, true)
.add(ltemType.ROCKET_LAUNCHER, true); // CLOSE-to-ME DIUM

If range prefs fails, general are used
You have to experiment! (== behavior parametrization!)

More at: http://pogamut.cuni.cz/pogamut_files/latest/doc/tutorials/20-HunterBot.html

Weapons & Shooting

Shooting

Shooting with WeaponPr ef s is easy!

Player enemy =
players .getNearestVisiblePlayer();

shoot .shoot(weaponPrefs, enemy);

shoot .shoot(weaponPrefs, enemy,
ltemType.ROCKET LAUNCHER);

/] do not use rocket | auncher

shoot .setChangeWeaponCooldown(millis);

Weapons & Shooting

Time your shooting — Cooldown class

Sometimes you need to perform the behavior
"once in a time” => Cooldown

Cooldown rocketCD = new Cooldown(2000);
[l mllis

If (rocketCD. isCool()){
rocketCD. use() ;
shoot .shoot(weaponPrefs, enemy);

else
shoot .shoot(weaponPrefs, enemy,
ltemType.),

}

Weapons & Shooting

Time your behaviors — Heatup class

Sometimes you need to pursue some behavior for a
while => Heatup

Heatup pursueEnemy = new Heatup(3000);
[l mllis

If (players.canSeeEnemy()) {
pursueEnemy. heat() ;
/Il fight the enemy
else
If (pursueEnemy. isHot()){
// pursue the enemy
else
// collect items

Practice Lesson

Outline

Big Picture

BOD (Behavior Oriented Design)
Gentle yaPOSH introduction
Weapons & Shooting
DeathMatch Bot

Deathmatch Bot

Basics

Its all about movement on the map
Picking the right place to be at
Picking the right item to go for
Knowing when it is worth to change the
behavior
| am almost at the rocket launcher, but | see

enemy player. Will | go for the weapon or start
fighting with the player?

Deathmatch Bot

Combat

Using proper weapon in proper situations
this . weaponPrefs

Knowing how to move in combat
Strafing, dodging, jumping

Maintaining distance according bot current
weapon

Facing one direction and move elsewhere
navigation .setFocus (...)

Beware that jumping and dodging reduces
bot accuracy!

Deathmatch Bot

Behavior switching

Should you switch from “getting the weapon”
into combat behavior?
Depends how far from the weapon you are

Do not switch if you are near... that would be a
waste

"NxN" transition conditions in general and
there is "no way"” around...

Create parameterized sense "mark-behavior”

We'll be cheating here ... it will be "mental” action in fact
returning always “false” followed by “do-nothing” action

Create parameterized sense “want-to-switch-to”

Assignment 8

(or Homework)

Evolve DeathMatchBot in yaPOSH more
That arms himself and is able to fight an
opponent
Does not stuck (for long)

Assesses behavior switching

Assignment

Cheatsheet

Access Pogamut modules from POSH actions and senses!
this . ctx .getltems().getSpawnedltems(ltemType.Categor
y. WEAPON
MyCollections.getFiltered(Collection, new
IFilter<item>() {...})

Handling unreachable items:
this . ctx .getNavigation().addStrongNavigationListener
(...STUCK_EVENT...)
myTabooSet.add() & myTabooSet.filter(...)

Specifying weapon preferences:
this . ctx .getWeaponPrefs().addGeneralPref(ltemType. FLAK CAN

NON true)
.addGeneralPref(ltemType. ROCKET_LAUNCHERue);

PogamutCup 2013

Sign-up today!

Find us at http://www.pogamutcup.com

DeathMatch 1va

Sign-up till 1.5.2013

Submit your bot till 13.5.2013

Attend the workshop at 16.5.2013 (free lunch ;-)

Win the prize-monevy!

Questions?

| sense a soul in search of answers...

We do not own the patent of perfection (yet...)

In case of doubts about the assignment,
tournament or hard problems, bugs don't
hesitate to contact us!

Jakub Gemrot (Monday practice lessons)
jakub.gemrot@gmail.com

Michal Bida (Thursday practice lessons)
michal.bida@gmail.com

OPP

QA

OPERACNI PROGRAM PRAHA
ADAPTABILITA

DEKUJI ZA POZORNOST

EVROPSKA UNIE

Evropsky socialni fond
Praha & EU: Investujeme do vasi budoucnosti

PRA HA
PRA GUE
PRA GA
PRA G

*
* 4k

EVROPSKA UNIE

