
UT2004 bots made easy!

Faculty of Mathematics and Physics
Charles University in Prague
11th March 2013

Lecture 3 – Running Around Tag! Tournament

 Fill the short test for this lessons

 5 minutes limit

private Boolean following = false;
private Boolean jumping = false;
private Boolean searching = false;
private Location search_location;
private Location last_location;

@EventListener(eventClass = GlobalChat.class)
protected void handleChat(GlobalChat event) {
 if (event.getText().contains("hi"))
 body.getCommunication()
 .sendGlobalTextMessage("Hey you");
 if (event.getText().contains("follow")) {
 this.following = !this.following;
 this.searching = false;
 }
 if (event.getText().contains("jump"))
 this.jumping = !this.jumping;
}

public void logic() throws PogamutException {
 if (this.following) {
 if (this.players.canSeePlayers()) {
 Player pl =
 this.players.getNearestVisiblePlayer();
 this.search_location = pl.getLocation();
 this.searching = true;
 this.move.moveTo(pl);
 } else {
 if (searching) {
 this.move.moveTo(this.search_location);
 if (this.getInfo()
 .atLocation(this.search_location))
 this.searching = false;
 } else
 this.move.turnHorizontal(30);
 }
 }
 if (this.jumping) act.act(new Jump());
}

private UnrealId followTarget = null;

@EventListener(eventClass = GlobalChat.class)
protected void handleChat(GlobalChat event) {
 if (event.getText().contains("hi"))
 body.getCommunication()
 .sendGlobalTextMessage("Hi");
 if (event.getText().contains(“start follow")) {
 followTarget = event.getId();
 }
 if (event.getText().contains(“stop follow”))
 followTarget = null;
}

public void logic() throws PogamutException {
 if (followTarget != null) {
 Player followPlayer = players.getPlayer(followTarget);
 if (info.atLocation(followPlayer.getLocation()) &&
 !followPlayer.isVisible()) {
 move.turnHorizontal(30);
 } else {
 move.moveTo(followPlayer);
 }
 }
}

<<< We’re going to dive into PogamutUT2004 platform
… technically.

>>> Great, just another proprietary library…

<<< Correct, but:
<<< 1) you have to deal with them everywhere,
<<< 2) platform is created around universal principles,

you will learn what to look for in other game
engines.

>>> Really… [skeptical face]

<<< We can only show you the door, you are the one
who has to go through it… ;-)

1. Big Picture
2. How to see

 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge

 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. How to think
 Intelligence by design

6. Tag! Tournament Announcement

Perception (P)

Memory (S)

Action (A)

1. Part of environment state E is exported to the agent p(E) = P

Environment state (E)

2. Agent performs action-selection: f(P,S) -> AxS

3. Actions are carried out in the environment: a(An,E) -> E

What if we dive deeper?

1. Big Picture
2. How to see

 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge

 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. How to think
 Intelligence by design

6. Tag! Tournament Announcement

 IWorldObjects

 Self, Player, Item, NavPoint, …
 this.world.getSingle(Self.class)

 this.world.getAll(Player.class)

 this.world.getAll(Item.class)

 this.world.getAll(NavPoint.class)

 Agent modules

 AgentInfo ~ this.info

 Players ~ this.players

 Items ~ this.items

 NavPoints ~ this.navPoints

 Location, Rotation, Velocity

 IWorldObjects

 Self, Player, Item, NavPoint, …

 All objects have unique UnrealId
▪ Each unique id has single UnrealId instance

 Each unique object has single instance
▪ Agent modules are respecting this, no sneaky clone()s

What does it mean for Collections?

=> can be used in Set<UnrealId>, Set<Player>

=> can be used as key in Map<UnrealId, ?> ,
Map<Player, ?> without performance hit

 IWorldObjects

 Self, Player, Item, NavPoint, …

 All objects have unique UnrealId
▪ Each unique id has single UnrealId instance

 Each unique object has single instance
▪ Agent modules are respecting this, no sneaky clone()s

What does it mean for object updates?

=> once obtained instances are auto-updated

=> there is no history

 IWorldObjects ~ low-level API
 this.world.getSingle(Self.class)

▪ Info about your bot

 this.world.getAll(Player.class)

▪ Returns Map<UnrealId, Player>

▪ All players encountered during the session

 this.world.getAllVisible(Player.class)

▪ Returns Map<UnrealId, Player>

▪ All players currently visible (in bot’s FOV)

 this.world.getAll/Visible(Item.class)

 this.world.getAll/Visible(NavPoint.class)

 …

 Agent modules ~ low-level API façades
 AgentInfo ~ this.info ~ Self

 Players ~ this.players ~ Player(s)

 Items ~ this.items ~ Item(s)

 NavPoints ~ this.navPoints ~ NavPoint(s)

 Advantages:
1. List of methods with JavaDoc

 => Easier to way to explore Pogamut API

2. Comprehensibly named methods
 => Easier to read & understand the code

 Location
 X, Y, Z
 can be used as “vector”

▪ add(), sub(), scale(), getDistance(), dot(), cross()
▪ rotateXY/XZ/YZ()

 Rotation

 Pitch (XZ), Yaw (XY), Roll (YZ)

 Velocity

 X, Y, Z

 All objects are immutables
=> Can be used in Set, Map

1. Big Picture
2. How to see

 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge

 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. How to think
 Intelligence by design

6. Tag! Tournament Announcement

 CommandMessages

 Move, Jump, Dodge

 this.act.act(new Move()…)

 this.act.act(new Jump()…)

 this.act.act(new Dodge()…)

 Agent module
 AdvancedLocomotion ~ this.move

 CommandMessages ~ low-level API
 Move

▪ You can specify 1 location in advance

▪ You can specify focus (where to look while moving), i.e.,
can be used for strafing

 Jump

▪ Can be used for double-jumps as well

 Dodge

▪ Can be used for quick direct jump to arbitrary location

 Agent modules ~ low-level API façade
 AdvancedLocomotion ~ this.move

 All commands wrapped into methods
▪ move.moveTo(), move.strafeTo(), move.jump(), …

 Some simple algebra wrapped as well
▪ move.dodgeLeft(), move.dodgeRight(), …

1. Big Picture
2. How to see

 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge

 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. How to think
 Intelligence by design

6. Tag! Tournament Announcement

 Custom “game-mode” for UT2004
 Two roles:

1. Seeker (having “it”)

2. Runner or Prey
 Seeker has to chase runners to pass „it“
 After passing “it” the former seeker is immune to

the new seeker
 this.tag agent module
 Custom map: DM-TagMap

 Simple rectangle map, no obstacles

 procedurally decsribed by TagMap static methods

1. Big Picture
2. How to see

 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge

 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. How to think
 Intelligence by design

6. Tag! Tournament Announcement

Perception (P)

Memory (S)

Action (A)

1. Part of environment state E is exported to the agent p(E) = P

Environment state (E)

2. Agent performs action-selection: f(P,S) -> AxS

3. Actions are carried out in the environment: a(An,E) -> E

Behavior Oriented Design
 by Joanna J. Bryson (UK)
 http://www.cs.bath.ac.uk/~jjb/web/bod.html

1. Specify top-level decision
a) Name the behaviors that the bot should do

b) Identify the list of sensors that is required to perform
the behavior

c) Identify the priorities of behaviors

d) Identify behavior switching conditions
2. Recursion on respective behaviors until

primitive actions reached

http://www.cs.bath.ac.uk/~jjb/web/bod.html
http://www.cs.bath.ac.uk/~jjb/web/bod.html
http://www.cs.bath.ac.uk/~jjb/web/bod.html
http://www.cs.bath.ac.uk/~jjb/web/bod.html
http://www.cs.bath.ac.uk/~jjb/web/bod.html
http://www.cs.bath.ac.uk/~jjb/web/bod.html

1. Big Picture
2. How to see

 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge

 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. How to think
 Intelligence by design

6. Tag! Tournament Announcement

 4 bots

 1 Seeker, 3 Runners (1 of them will be immune…)

 Random groups
 Tournament will be held next week, only bots

submitted until Sunday 17.3.2013, 23:59 will
participate

 No shooting allowed, no bot speed
reconfigurations allowed

 Download the TagBot project template
 Copy ‘map/DM-TagMap.ut2’ into

$UT2004/Maps folder
 Implement both TagBot roles

 Seeker ~ 5 points
 Runner ~ 5 points

 Implementations having one role only won’t
be accepted (~ 0 points)

Via e-mail:
 Subject

 “Pogamut homework 2013 – Assignment X”
 Replace ‘X’ with the assignment number and the subject has to be without

quotes of course
 …or face -2 score penalization

 To
 jakub.gemrot@gmail.com

 Jakub Gemrot (Monday practice lessons)
 michal.bida@gmail.com

 Michal Bída (Thursday practice lessons)

 Attachment
 Completely zip-up your project(s) folder except ‘target’ directory and IDE

specific files (or face -2 score penalization)

 Body
 Please send us information about how much time it took you to finish the

assignment + any comments regarding your implementation struggle
 Information won’t be abused/made public
 In fact it helps to make the practice lessons better

 Don’t forget to mention your full name!

mailto:jakub.gemrot@gmail.com
mailto:michal.bida@gmail.com
mailto:michal.bida@gmail.com
mailto:michal.bida@gmail.com
mailto:michal.bida@gmail.com

  We do not own the patent of perfection (yet…)

 In case of doubts about the assignment,
tournament or hard problems, bugs don’t
hesitate to contact us!

 Jakub Gemrot (Monday practice lessons)
 jakub.gemrot@gmail.com

 Michal Bída (Thursday practice lessons)
 michal.bida@gmail.com

mailto:jakub.gemrot@gmail.com
mailto:jakub.gemrot@gmail.com
mailto:michal.bida@gmail.com
mailto:michal.bida@gmail.com
mailto:michal.bida@gmail.com
mailto:michal.bida@gmail.com

