Faculty of mathematics and physics
Charles University in Prague
31™" March 2015

UT2004 bots made easy!

Pogamut 3

Lecture 6 — A* + Visibility

Bussiness as usual

Copy UT2004 into D:\

Start downloading the bot:
http://alturl.com/45x9m

http://diana.ms.mff.cuni.cz/pogamut files/lectures/2014-201c/L6-HideAndSeekBot.zip

http://alturl.com/45x9m
http://diana.ms.mff.cuni.cz/pogamut_files/lectures/2014-2015/L6-HideAndSeekBot.zip

Fill the short test for this lessons

7 minutes
http://alturl.com/gnvbh

https://docs.google.com/forms/d/1GYjpPLjoPaA5o8jq H8
SPhHgnogulLgaJrhEL8CdACnw/viewform

http://alturl.com/gnvbh
https://docs.google.com/forms/d/1GYjpPLj0PaA508jq_H8SPhHqnoguLgaJrhEL8CdACnw/viewform
https://docs.google.com/forms/d/1GYjpPLj0PaA508jq_H8SPhHqnoguLgaJrhEL8CdACnw/viewform

Assignment 5 Revisited

NavigationBot

How to detect that the bot has stuck?
What if the location is currently
unreachable?

TabooSet explained

Today’s menu

Big Picture
Visibility abstraction
Visibility matrix
Visibility
this.visibility
How to reason about path
A* and custom map view
UT2004AStar, 1PFMapView<NavPoint>
this.aStar

Hide&Seek Game

Rules, Map
HideAndSeekMap
Hide&Seek Tournament Announcement

Big Picture

Already covered

Simulation

NPC component

/NPC Layer/

Low-level reasoning

High-level reasoning

NDUSTRY STATE OF
THE ART

Game Engine

H'E;h Annotations

Maps ‘ Objects |

Data filters for
human like inpu

BlackBoard, key-value

BT, HTN, FSM, STRIPS (FEAR

NPC

Hierarchical A*

Memory | State

teerings (Reynolds),
RVO, ORCA

Body | Affects

Information abstraction

Synchronous
execution

Low

Locomotion

. |Animation Sel.| Path Following

Animation

Input <
Environment, body state changes

Data flow

» Qutput

Body actions

Game mechanics, Physics, Animation, Rendering

Big Picture

Today
NPC component /NPC Layer/ Simulation || Low-level reasoning || High-level reasoning

Game Engine

High . NPC
A Annotations BT, HTN, FSM, STRIPS (FEAR
Maps ‘ Objects | :
c _;‘. .
S P - :
® Data filters for : . Decision : teerings (Reynolds),
‘ub, human like inpu _ * | ‘ RVO, ORCA
0 g . .
5 - ‘ Reasoning / Memoy | State / Behavior / :
5 - —
g ~. F’erception /[_\::_ﬁ Body Affeclsf :
L Ny o~
.
or bypass ~~
Sl=|o “~-_7->___ Locomotion
% GE') % Synchronous \\\ Animation Sel.| Path Following
\/ 7" execution > Animation
Low e Y S
Input < Data flow » Qutput
Environment, body state changes Body actions
Game mechanics, Physics, Animation, Rendering

Today’s menu

Big Picture
Visibility abstraction
Visibility matrix
Visibility
this.visibility
How to reason about path
A* and custom map view
UT2004AStar, 1PFMapView<NavPoint>
this.aStar

Hide&Seek Game

Rules, Map
HideAndSeekMap
Hide&Seek Tournament Announcement

Visibility Abstraction

Visibility Matrix

Visibility class

Contains precomputed visibility matrix between
path points and some points on links

Matrices for competition maps already

Dresent
OBNONRG DRE@E®
: Vil1]1(/0]0|0]|0
: Vol1 (1|0 |1]0]1
______ —_ Valo|lo|1|0(1]|0
@ @ @ V4{0[1/0|1)|0]1
; Vg|0|0|1|0|1]|0
5 Vglo[1]0[1]0]1

Visibility Matrix

How to get to cover?

How to find the cover?

Enemies ... E,..E,
k

Safe waypoints... S=—vV,
=1

i 9000060
@ @ @ Vil1/1]|0[0]0|0
: Vol1]1]0]1|0]|1
______ —1._._. E V3/0(0[1|0]|1]|0
(2) (4) (6) V4|0]1]0]1]0]1
5 V5/0|0[1]0]1]0
; Ve|0|1]0]1]0]|1

Visibility Matrix

Smart attack

0 0
o o
0
0
[oje) O
0 0
0
o 0
° S
0
®
[oRol .
o '
®

1. Choose targetT
2. Others are
enemies Ei

2. Navpoints target T
is visible from

VT

® ®
0
®
®
0 —~ ®
0 ®
® '
'e) @ ®
‘s 0
0
'e)
')
') — o)
o o
/) O
') ')

3. Navpoints
other enemies Ei
can see

4. Smart place to
shoot from

k
Vi A=v Ve
=1

Visibility Matrix

Interesting methods

Visibility class (this.visibility)
getNearestVisibilityLocationTo(lLocated)
getCoverPointsFrom(lLocated)
getCoverPointsFromN(lLocated..)
getMatrix()

VisibilityMatrixXclass

getMatrix()
getNearestindex(lLocated located)

Visibility Matrix

Visibility matrix file

To be able to use the visibility matrix, you need to
have a file with the visibility information
Each map has its own file. E.qg.

VisibilityMatrix-DM-TrainingDay-all._.bin

Place this file in the root of the project folder of your
bot

Get all matrices from svn

svn://artemis.ms.mff.cuni.cz/pogamut/trunk/project/
Main/PogamutUT2004Examples/19-
VisibilityBatchCreator/visibility-matrices

Today’s menu

Big Picture
Visibility abstraction
Visibility matrix
Visibility
this.visibility
How to reason about path
A* and custom map view
UT2004AStar, 1PFMapView<NavPoint>
this.aStar

Hide&Seek Game

Rules, Map
HideAndSeekMap
Hide&Seek Tournament Announcement

A* Algorithm

Reasoning

Agent deliberation cycle
Update senses

Some Players have become visible

Update percepts

They are all enemies!

Reason
Where can | take cover? How can | fallback?
=> Infer new information given the senses [percepts

Decide

Inform my team then ... should | take cover, fallback or attack?

Take action

A* Algorithm

Dijkstra

Remembering Dijkstra’s alg?
Roughly speaking...

Nodes = {start}
while ('nodes.empty) {
Node = pick shortest path(nodes)
iIT (Node == Target) return
reconstruct path(Node)
Nodes = Nodes \ Node
expand(Node, Nodes)

}

A* Algorithm

Dijkstra Example |

A* Algorithm

Dijkstra Example Il

A* Algorithm

Dijkstra Example Il

A* Algorithm

Basics

A* trick
Roughly speaking...

Nodes = {start}
while ('nodes.empty) {
Node = pick the most promising(nodes)
iIT (Node == Target) return
reconstruct path(Node)
Nodes = Nodes \ Node
expand(Node, Nodes)

}

20

A* Algorithm
A* Example |

21

A* Algorithm
A* Example I

22

A* Algorithm
A* Example Il

23

A* Algorithm

Basics

A* heuristic function must be...?

Admissible for correctness
Do not over-estimate the path-cost

Consistent == Monotone (for efficiency)

“triangle inequation”

Blah! Let’s hack it!

What if we impose additional COST to some nodes
or links?

A* Algorithm

Juggling with node/link costs

Len(path) ... path length

min-Len-Path(N,M) ... shortest path between N and M
B ... bad node/link B

EB ... extra cost visiting/traversing B

Cost(path) ... pathcost(based on Len(path))including EB
m idn—Cost—Path (N,M) ... the least cost path between N
and M

What P-Len(N,M) and P-Cost(N,M) look like?
P-Len(N,M) == P-Cost(N,M)
There does not exist other path p(N, M) not-including B satisfying
Len(p(N,M)) < Len(P-Len(N,M)) + EB
P-Len(N,M) != P-Cost(N,M)
We have found Len-longer path that does not traverse B satisfying
Len(P-Cost(N,M)) < Len(P-Len(N,M)) + EB

A* Algorithm

Juggling with node/link costs

Example map

26

A* Algorithm

Juggling with node/link costs

Start-node

27

A* Algorithm

Juggling with node/link costs

Target-node

28

A* Algorithm

Juggling with node/link costs

Shortest path

29

A* Algorithm

Juggling with node/link costs

Adversary we want to avoid

30

A* Algorithm

Juggling with node/link costs

Let’s rise the NODE cost ... is it enough?

31

A* Algorithm

Juggling with node/link costs

32

A* Algorithm

Juggling with node/link costs

Rise the NODE cost again... enough now?

33

A* Algorithm

Juggling with node/link costs

Here you go!
Why was this path found?

34

A* Algorithm

Juggling with node/link costs

Adding important heuristic costs
So, are we cheating or not?

START O

35

A* Algorithm

Map cost tricks

Combine it with enemy position!
extra cost = 500 / distance-to-enemy

Combine it with Visibility class!
boolean visibility.isVisible(lLocated, ILocated)

Combine both enemy position and the visibility!

Combine with already-found path + fwMap and
find different paths!

Play with the cost iteratively

Different path not found? Ok, just rise the cost...

Does different path even exist?
=>Try to “forbid” some node/link completely

A* Algorithm

Pogamut 3 Classes

UT2004AStar
this.aStar.findPath(from, to, IPFMapView);

Implement your own custom IPFMapView:

new IPFMapView<NavPoint>() {
public int getNodeExtraCost(NavPoint node, iInt mapCost) {}
public int getArcExtraCost(NavPoint nodeFrom, NavPoint nodeTo, int mapCost) {}

public Collection<NavPoint> getExtraNeighbors(NavPoint node,
Collection<NavPoint> mapNeighbors) {}

public boolean i1sNodeOpened(NavPoint node) {}

public boolean 1sArcOpened(NavPoint nodeFrom, NavPoint nodeTo) {}

Today’s menu

Big Picture
Visibility abstraction
Visibility matrix
Visibility
this.visibility
How to reason about path
A* and custom map view
UT2004AStar, 1PFMapView<NavPoint>
this.aStar

Hide&Seek Game

Rules, Map
HideAndSeekMap
Hide&Seek Tournament Announcement

Hide&Seek Game

Children play

Custom “"game-mode” for UT2004
Two roles:

Seeker (having “it")

Runner
Seeker has to find runners and then get home (safe
noint) first to “capture them”
Runners have to make it home (to safe point)
before Seeker
this_hide agent module
Custom map: DM-HideAndSeekMap

Hide&Seek Game

Rules specifics

One match = 3 games of 10 rounds each of hide and
seek with fixed seeker for each game
1 round = 9o seconds (first 8 seconds hide time, next 5
seconds restricted safe area time)
Spotting
Seeker “spots” runner when he sees him for at least 600
ms (cca “two logic() ticks")
Seeker is spawned into the map after first 8 seconds
Safe area
Runners are not allowed to dwell around safe point for

certain amount of time at the beginning of the game (5
seconds)

Hide&Seek Game

Task point rewards

Scoring RUNNER

Runner captured by seeker

Runner fouled (went into safe area before timeout)
Runner made it to safe area before seeker

Runner survived round (haven't been captured by seeker)

Scoring SEEKER

Seeker captured runner (spotted + made it to s. a. first)
Runner spotted

Runner escaped (made it to safe area before seeker)
Runner survived (neither of them made it to safe area)
Seeker fouled (dwelled in restricted area > 7 secs)

-1000
150
50

v
=
©
O
.
v
Q
n
od
O
O
L

Q.
(C
&
=
O
)
V)
-
9

DM-HideAndSeekMap

i
..(5

5

A A A AR

~
e -_
4

7 .ﬁ. i

- -1
i
i
i
i
-1
-
i
i
i
i
i

PEE B B RS
#ﬂ#ﬂ###ﬂ#ﬂ#

181818 81818 818 81818}

Today’s menu

Big Picture
Visibility abstraction
Visibility matrix
Visibility
this.visibility
How to reason about path
A* and custom map view
UT2004AStar, 1PFMapView<NavPoint>
this.aStar

Hide&Seek Game

Rules, Map
ﬂideAndSeekMap
Hide&Seek Tournament Announcement

Hide&Seek Tournament

Chance to score extra points!

4, bots

1 Seeker, 3 Runners
Random groups, Fixed map
Fixed Seeker - 4 matches per group
Only bots submitted until Sunday 12.4.2014,
8:00 will participate
No shooting allowed, no bot speed
reconfigurations allowed, no manual
respawns allowed

Assignment 6

Hide&Seek Bot

Create Hide&Seek Bot

Implement both Seeker and Runner

Tournament will be played on a different map,
so we do not recommend using “static”
information e.g. run to [1000,200,100] ©

To run the hide and seek match launch
HideAndSeekGame class!

For the tournament name the bot with your
name in getlnitializeCommand() method

Send us finished assignment

Via e-mail:
Subject
"Pogamut homework 2015 — Assignment X"
Replace “X” with the assignment number and the subject has to be without
quotes of course
...or face -2 score penalization
To

jakub.gemrot@gmail.com
Jakub Gemrot (Tuesday practice lessons)

Attachment
Completely zip-up your project(s) folder except “target” directory and IDE
specific files (orface -2 score penalization)

Body
Please send us information about how much time it took you to finish the
assignment + any comments regarding your implementation struggle
Information won’t be abused/made public
In fact it helps to make the practice lessons better

Don’t forget to mention your full name!

mailto:jakub.gemrot@gmail.com

Questions?

| sense a soul in search of answers...

We do not own the patent of perfection (yet...)

In case of doubts about the assignment,
tournament or hard problems, bugs don't
hesitate to contact us!

Jakub Gemrot (Tuesday practice lessons)
jakub.gemrot@gmail.com

mailto:jakub.gemrot@gmail.com
mailto:jakub.gemrot@gmail.com

	Pogamut 3
	Bussiness as usual
	Warm Up!
	Assignment 5 Revisited�NavigationBot
	Today’s menu
	Big Picture�Already covered
	Big Picture�Today
	Today’s menu
	Visibility Abstraction�Visibility Matrix
	Visibility Matrix�How to get to cover?
	Visibility Matrix�Smart attack
	Visibility Matrix�Interesting methods
	Visibility Matrix�Visibility matrix file
	Today’s menu
	A* Algorithm�Reasoning
	A* Algorithm�Dijkstra
	A* Algorithm�Dijkstra Example I
	A* Algorithm�Dijkstra Example II
	A* Algorithm�Dijkstra Example III
	A* Algorithm�Basics
	A* Algorithm�A* Example I
	A* Algorithm�A* Example II
	A* Algorithm�A* Example III
	A* Algorithm�Basics
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Map cost tricks
	A* Algorithm�Pogamut 3 Classes
	Today’s menu
	Hide&Seek Game�Children play
	Hide&Seek Game�Rules specifics
	Hide&Seek Game�Task point rewards
	Hide&Seek Game�Custom map
	Today’s menu
	Hide&Seek Tournament�Chance to score extra points!
	Assignment 6�Hide&Seek Bot
	Send us finished assignment
	Questions?�I sense a soul in search of answers…

