
UT2004 bots made easy!

Lecture 9 –yaPOSH

Faculty of Mathematics and Physics
Charles University in Prague
28th April 2015

 Fill the short test for this lessons
 8 minutes limit
 http://alturl.com/zgu9b

 https://docs.google.com/forms/d/1MT1-
Xi6YBWtFSrtKQJE-7su2O_-h6B0UhuLnGwiO-
Hk/viewform

http://alturl.com/zgu9b
https://docs.google.com/forms/d/1MT1-Xi6YBWtFSrtKQJE-7su2O_-h6B0UhuLnGwiO-Hk/viewform
https://docs.google.com/forms/d/1MT1-Xi6YBWtFSrtKQJE-7su2O_-h6B0UhuLnGwiO-Hk/viewform
https://docs.google.com/forms/d/1MT1-Xi6YBWtFSrtKQJE-7su2O_-h6B0UhuLnGwiO-Hk/viewform

1. Big Picture
2. BOD & POSH
3. yaPOSH
4. Simple DMBot in yaPOSH

1. Big Picture
2. BOD & POSH
3. yaPOSH
4. Simple DMBot in yaPOSH

 BOD (Behavior Oriented Design)
 A methodology for developing control of

complex intelligent agents
▪ virtual reality characters, humanoid robots or

intelligent environments…
 Combines the advantages of Behavior-

Based AI and Object Oriented Design.

 Authored by Joanna J. Bryson
 http://www.cs.bath.ac.uk/~jjb/web/bod.html

http://www.cs.bath.ac.uk/~jjb/web/bod.html

Behavior Oriented Design
 by Joanna J. Bryson (UK)
 http://www.cs.bath.ac.uk/~jjb/web/bod.html

1. Specify top-level decision
a) Name the behaviors that the bot should do
b) Identify the list of sensors that is required to perform

the behavior
c) Identify the priorities of behaviors
d) Identify behavior switching conditions

2. Recursion on respective behaviors until
primitive actions reached

http://www.cs.bath.ac.uk/~jjb/web/bod.html

1. State the goal of you agent behavior
 E.g. It will be a Deathmatch bot

2. Brainstorm what it will mean to fulfill the behavior goal
 E.g. fight players, gather items

3. Think about conditions that should be fulfilled for the
respective behaviors

 E.g. I’ll fight only when I see enemy and have proper weapon

4. Revise, revise, revise
 Oh wait, what if I don’t have the proper weapon, I should add a behavior to

flee from fight and gather some weapon.

5. Pick one of the specified top level behaviors and apply
recursion from point 1!

6. When you end up with sufficiently simple and clear defined
sense/action – NAME IT WELL, implement it and test it!

Recursion == Iterative development
1. Select a part of the plan to extend next.
2. Extend the agent with that implementation
 Extend the plan, code actions and senses
 Test and debug that code (!!!)

3. Revise the current specification.

 Name the behaviors (functions) logically!
 Good method name is better than documentation!

 Reduce code redundancy
 Use copy paste with caution or not at all!

 Avoid Complex Conditions
 The shorter condition, the better the understanding

 Avoid Too Many If-then rules at one level
 One level of decision making usually needs no more

than 5 to 7 if-then rules, they may contain fewer..
 When in doubt, favor simplicity.

 POSH
 Parallel-rooted, Ordered Slip-stack Hierarchical planner

 To put it simply:
 a reactive planner working with FIXED, PRE-SET plans

 To put it simpler:
 a tool enabling to specify if – then rules with priority in a tree like

structure

 Advantage:
 Makes you think about the behavior in human terms more than the

code

 There are multiple POSH implementations
 POSH, pyPOSH, JavaPOSH, yaPOSH, …
 Their language varies a lot

 General structure of the POSH “tree”
 Root is a Drive Collection

 Root’s children are Drives

 Drive child is either Competences, or Action Pattern or

Action

 Competence children are again either Competences, or
Action Pattern or Action

 Almost every node has associated a “triggering/goal”
condition

[Bryson, 2001]

 Action Pattern
 (a1, a2, …, an) a sequence of actions

 e.g., "baa" and look at it (sheep)

 Competence:
 {s1, …, sn} a set of competence steps

 steps that can be performed in different orders (i.e., a set of
sequences)

 one of the steps can be a goal step
 the competence returns a value: DONE if the goal is
 accomplished, RUNNING if none of its steps fire

 Competence step
 <p, r, a, [n]>

 a priority, a releaser, an action, a number of retries
 the action can also be a competence / action pattern

[Bryson, 2001]

 Drive Collection
 { d1, …, dn } d is a drive element
 the root of the hierarchy
 a drive element: <p, r, a, A, [f]>

▪ p – a priority
▪ r – a releaser
▪ a – a currently active element of the drive element (a sub-element)
▪ A – the top element (i.e., a collection, action pattern, or an action) of the drive

element → slip-stack
▪ f – a maximum frequency at which this drive element is visited

▪ e.g., jump every five seconds

 for any cycle of the action selection, only the drive collection itself and at
most one other POSH element will have their releasers examined

 One drive element can suspend temporarily another drive element
 a competence step cannot interrupt another competence step

 When the suspending drive element terminates, the suspended drive
element continues

 POSH defines Tree-like structure

 Respective DRIVEs and COMPETENCE STEPs has
 TRIGGERINIG conditions

 COMPETENCEs has GOAL condition

 DRIVEs may have option FREQUENCY decorator

 COMPETENCEs may have TIMEOUT decorator

 COMPETENCE STEPs may have RETRY-COUNT
decorator

 Each DRIVE has an ACTIVE (TOP) ELEMENT that gets
executed when DRIVE triggers

 DRIVE stack (and ACTIVE ELEMENT) is RESET if SWITCHING
occurs

 Multiple DRIVEs can run in parallel (if defined as such)

def init_senses(self):
 self.add_sense("see-player", self.see_player)
 ...

def init_acts(self):
 self.add_act("move-player", self.move-player)
 ...

def see_player(self):
 ...

(RDC life (goal((fail)))
 (drives
 ((hit(trigger(* (hit-object)(is-rotating False))) avoid))
 ((follow(trigger((see-player))) follow-player))
 ((wander(trigger((succeed))) wander-around))
))

(C wander-around (minutes 10) (goal((see-player)))
 (elements
 ((close-enough(trigger((close-to-player))) stop-bot))
 ((move(trigger((see-player))) move-player))
))

top-level

prio: 1
2
3

terminate (goal) condition timeout condition

Python

"Lisp"

if then

checking period / frequency

def init_senses(self):
 self.add_sense("see-player", self.see_player)
 ...

def init_acts(self):
 self.add_act("move-player", self.move-player)
 ...

def see_player(self):
 ...

(RDC life (goal((fail)))
 (drives
 ((hit(trigger((hit-object)(is-rotating False))) avoid))
 ((follow(trigger((see-player))) follow-player))
 ((wander(trigger((succeed))) wander-around))
))

(C wander-around (minutes 10) (goal((see-player)))
 (elements
 ((close-enough(trigger((close-to-player))) stop-bot))
 ((move(trigger((see-player))) move-player))
))

1. Big Picture
2. BOD & POSH
3. yaPOSH
4. Simple DeathMatch Bot in yaPOSH

 yaPOSH
 yet-another Parallel-rooted, Ordered Slip-stack Hierarchical

planner

 To put it simply:
 a reactive planner working with FIXED, PRE-SET plans

 To put it even simpler:
 a tool enabling to specify if – then rules with priority in a tree

like structure

 Advantage:
 Makes you think about the behavior in human terms more

than the code

 Actions and Senses
 if (sense) then (action)

 Drive Collection (DC)
 First level of if-then rules

 Competence (C)
 Second – Nth level of if-then rules

 Action Patterns (AP)
 Specifies N actions that will be performed in a

sequence

 Actions (and all nodes)
 Are DURATIVE
▪ Returns FINISHED, RUNNING, RUNNING_ONCE, FAILED

 Drives
 No timeout decorator, No slip-stack, No parallelism

 Competence
 No goal node (just another inner-reusable node)

 Competence Step
 No retry count decorator

DriveCollection / Competence {
 1. if (sense1()) then competence1(); return;
 2. if (sense2()) then competence2(); return;
 3. if (sense3()) then action-pattern1(); return;
 4. if (sense4()) then competence3(); {
 1. if (sense5()) then action1(); return;
 2. if (sense6()) then competence4(); return;
 3. if (sense7()) then action2(); return;
 4. if (sense8()) then action-pattern(); return;
 …
 N. return;
 }
 …
}

DriveCollection is the root of if-then tree of rules.

Competence is another level of if-then tree of rules.

ActionPattern.run() {
 while (!action1-finished()) { action1(); }
 while (!action2-finished()) { action2(); }
 while (!action3-finished()) { action3(); }
}

ActionPattern is sequence of action.

ActionPattern.run() {
 if (this.step == 1) {
 while (!action1-finished()) { action1(); }
 this.step = 2;
 }
 if (this.step == 2) {
 while (!action2-finished()) { action2(); }
 this.step = 3;
 }
 if (this.step == 3) {
 while (!action3-finished()) {action3();}
 this.step = 1; // reset
 return ActionResult.FINISHED;
 }
}

ActionPattern is tracking the step it executed last and always

continues from that one.

ActionPattern.run() {
 if (this.step == 1) {
 while (!action1-finished()) { action1(); }
 if (action1-failed()) { this.step = 1; return ActionResult.FAILED; }
 this.step = 2;
 }
 if (this.step == 2) {
 while (!action2-finished()) { action2(); }
 if (action2-failed()) { this.step = 1; return ActionResult.FAILED; }
 this.step = 3;
 }
 if (this.step == 3) {
 while (!action3-finished()) {action3();}
 if (action3-failed()) { this.step = 1; return ActionResult.FAILED; }
 this.reset();
 return ActionResult.FINISHED;
 }
}

Of course, ActionPattern honors FAILED state, which resets it.

ActionPattern.run() {
 if (step >= children.size()) {
 this.reset();
 return FINISHED;
 }
 Node child = children[step];
 switch (child.run()) {
 case FINISHED:
 ++step;
 return this.run();
 case RUNNING:
 return RUNNING;
 case RUNNING_ONCE:
 ++step;
 return RUNNING_ONCE;
 case FAILED:
 this.reset();
 return FAILED;

 }
}

ActionPattern.reset() {
 step = 0;
 for (Node child : children) child.reset();
}

 Senses
 Represent condition (Do I see a player?)
 Return basic types
▪ Boolean, Integer, Double, String, …

 Can be queried either as ==, !=, >, <, <= or >=
 E.g.:

 Actions
 Represent an action in the environment
 Are expected to return:
▪ FINISHED (an action has been finished successfully),
▪ RUNNING (an IVA action is still being executed within

the environment),
▪ FAILED (an action execution has failed).

 Have three methods – init(), running(), done()

 yaPOSH runs within “logic()” method you
know from standard Java bot

yaPOSH will execute until
it finds an action that
affect the environment
and requires new info
From the environment.

Bad plan may stall
the bot!

1.) DRAG & DROP!

2.) Fill template

3.) Edit generated Java source file

1.) DRAG & DROP!

2.) Fill template

3.) Edit generated Java source file

 Are created by drag and dropping from POSH
editor from the tabs at the right side of IDE

 Every POSH action and sense has Context
(this.ctx) that contains all Pogamut modules.

 Context is an editable class that is a part of
your POSH bot sources, e.g.
AttackBotContext

 You may use context to store some variables,
e.g. Item you are going for or Player you are
going to fight

 Competences, action patterns, actions and senses can be
parameterized

 Enables drag and drop
 Select action or sense you want to add or change from

the editor and drag and drop it at desired place
 Double clicking POSH graphical element opens

editor, right clicking opens element menu
 Support “Go to source”, breakpoints and debugging
 Breakpoints PAUSE the bot AND the environment

 Run the bot in Debug mode (right click the project,
select Debug)

 In the Debug toolbar, click the green circle button
to enable POSH plan debugger

 A window with Debugger appears:

1. Big Picture
2. BOD & POSH
3. yaPOSH
4. Simple DMBot in yaPOSH

 Create (Simple) DeathMatchBot in yaPOSH
 That arms himself and is able to fight an

opponent
 Does not stuck (for long).

 Points: 5

 Access Pogamut modules from POSH actions and senses!
 this.ctx.getItems().getSpawnedItems(UT2004ItemType.C

ategory.WEAPON)
 MyCollections.getFiltered(Collection, new

IFilter<Item>() {…})

 Handling unreachable items:
 this.ctx.getNavigation().addStrongNavigationListener

(…STUCK_EVENT…)
 myTabooSet.add() & myTabooSet.filter(…)

 Specifying weapon preferences:
 this.ctx.getWeaponPrefs().addGeneralPref(UT2004ItemType.FL

AK_CANNON,true)
.addGeneralPref(UT2004ItemType.ROCKET_LAUNCHER,true);

Via e-mail:
 Subject

 “Pogamut homework 2015 – Assignment X”
 Replace ‘X’ with the assignment number and the subject has to be without

quotes of course
 …or face -2 score penalization

 To
 jakub.gemrot@gmail.com

 Jakub Gemrot (Tuesday practice lessons)

 Attachment
 Completely zip-up your project(s) folder except ‘target’ directory and IDE

specific files (or face -2 score penalization)

 Body
 Please send us information about how much time it took you to finish the

assignment + any comments regarding your implementation struggle
 Information won’t be abused/made public
 In fact it helps to make the practice lessons better

 Don’t forget to mention your full name!

mailto:jakub.gemrot@gmail.com

 We do not own the patent of perfection (yet…)

 In case of doubts about the assignment,
tournament or hard problems, bugs don’t
hesitate to contact us!

 Jakub Gemrot (Tuesday practice lessons)
 jakub.gemrot@gmail.com

mailto:jakub.gemrot@gmail.com
mailto:jakub.gemrot@gmail.com

	Pogamut 3
	Warm Up!
	Today’s menu
	Big Picture�Already covered
	Big Picture�Today
	Today’s menu
	Behavior Oriented Design�Methodology
	Behaviot Oriented Design�Intelligence by design
	Behavior Oriented Design�BOD in human language
	Behavior Oriented Design�Iterative Development
	Behavior Oriented Design�Revising BOD Specifications
	POSH?
	POSH�Control Structures I
	POSH�Control Structures II
	POSH�Control Structures III
	POSH�Control Structures I - Visualization
	POSH�Control Structures II - Visualization
	POSH�Control Structures III - Visualization
	POSH�Control Structures IV – Parallel + Slip Stack
	PyPOSH
	PyPOSH
	Practice Lesson�Outline
	yaPOSH�Introduction
	yaPOSH�Primitives
	yaPOSH�Differences from POSH
	yaPOSH�Plan structure (Java glasses)
	yaPOSH�Plan structure (Java glasses)
	yaPOSH�Plan structure (Java glasses)
	yaPOSH�Plan structure (Java glasses)
	yaPOSH�Plan structure (Java glasses)
	yaPOSH�Senses
	yaPOSH�Action execution
	yaPOSH�Execution semantics
	yaPOSH�Plan structure (the real)
	yaPOSH�How to make new Sense?
	yaPOSH�How to make new Action?
	yaPOSH�New Action Pattern, New competence?
	yaPOSH Context�How to access Pogamut modules?
	yaPOSH�Parameters
	yaPOSH�POSH Editor
	yaPOSH�How to run POSH plan debugger
	Practice Lesson�Outline
	Assignment 9�(or Homework)
	Assignment 9�Cheatsheet
	Send us finished assignment
	Questions?�I sense a soul in search of answers…

