

Intelligent virtual actors

Cyril Brom et al.

Charles University in Prague Faculty of Mathematics and Physics Dept. of Software and Computer Science Education

brom@ksvi.mff.cuni.cz

Outline

- 1. Intelligent virtual actors
- 2. Action selection
- 3. Useful metaphors:
 - Goals, Desires, Intentions
 - Affordances
- 4. Discussion

Virtual humans (a short intro)

EPFL, Virtual Reality Lab (c)

Believability, imitation, cheating,...

 Computer games, educational applications, therapies, virtual storytelling, film industry...

Plausibility, inspiration, falsifying,...

Cognitive psychology

FearNot, Aylett et al., 2005-7

FearNot, Aylett et al., 2005-7

Episodic memory

"I was doing SearchRandom for smokeability because of Smoke. I was doing go from room 1 to room 2 because of SearchRandom. I was doing

look in environment because of SearchRandom. I was doing go from room 2 to room 5 because of SearchRandom. I was doing pick up Calumet1 because of Smoke. I was doing Smoke."

Level of detail Problem statement

- Large words → SPEED
 - real-time, time-critical, and yet hundreds of actors and tens of locations
- Idea:
 - Cheating is ok provided the user perceives the right think
 - Can we apply level of detail for high-level action selection and space?

The results of the simulation may differ for different LODs!

• the lower details only **approximates** the full detail

2. Action selection (reactive planning)

Action selection problem

The problem of "what to do next"

- representation of behaviour (procedural knowledge)
- control algorithm

Robotics, software agents, ...

dynamic, unpredictable complex, human-like behavior

A possible approach

Reactive rules with priorities

An NPC from a MMORPG in a shop:

- 1. if fire then flee
- 2. if attacked then defence
- 3. if a player asks and not aggressor then answer
- 4. if a player is near then pretend working
- 5. otherwise nothing

An example plan

Simple hierarchical reactive planning

[Partington & Bryson, 2005]

Other possibilities

- Finite state machines
- Other rules
 - Soar, fuzzy rules
- Petri Nets
- Any-time planning
- Free-flow hierarchies
- Neural Networks
 - the most problematic approach!

3. Useful black-box metaphors

Behavioural representation

To describe possible behaviour in terms of intention: enjoy desires (goals) that an actor can commit itself to (i.e. intentions) and of activities actorthat can accomplish the intentions pub-2 bub-1 practical reasoning, BDI [Bratman, 1987] easy to understand enjoying in a pub something like go-to fuzzy if-then rules

3.2 Affordances

Actors perceive its world in the terms of environmental possibilities

- theory of affordances [Gibson, 1979]
 - "...the affordances of the environment are what it **offers** the animal, what it provides or **furnishes**."

"sittable" & "throwable" instead of "chair"
"sittable" for a human, "jumpable" for a dog

- Intelligence "in the environment"
- Smart objects [Kallmann, Thalmann, 1998]
- Semantic marks [e.g. Isla, 2005]

- way-points
- surrounding information
- navigation mesh
- other cues

[Gemrot, 2006] (c)

[Isla, 2005] (c)

Halo 2

4. Conclusion