
2 - Human-like artificial agents 1

Human-like artificial creatures
2. Reactive planning

Cyril Brom
Faculty of Mathematics and Physics

Charles University in Prague
brom@ksvi.mff.cuni.cz

(c) 2/2006

2 - Human-like artificial agents 2

Outline
1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning
• simple hierarchical reactive planning
• PyPOSH example

4. Finite state machines
• basic
• hierarchical
• Probabilistic
• Quake3 hFSM example

5. Conclusion

2 - Human-like artificial agents 3

If-then rules

if p then A

a precondition, an antecedent

an action, an effect, a consequent...

2 - Human-like artificial agents 4

If-then rules

• A rule fires if its condition holds
• A reactive plan consist of tens of if-then rules
• All rules are "evaluated at once"

– think in parallel!
• Technically, the parallelism must be

"transformed" to a serial program.

2 - Human-like artificial agents 5

A thermostat

220oC The regulator is set on 220oC:

1. IF temperature > 225oC,
 THEN switch the heater off.
2. IF temperature < 215oC,
 THEN switch the heater on.

Why is the temperature tested for 225 / 215 instead of 220?

What to do when more rules fires in the same instant?

2 - Human-like artificial agents 6

Simple reactive planning
• Assign a priority to each rule:

When starts: not at home && be in picking state

1. if see_obstacle then change_direction
2. if basketful_of_m. and picking then stop_picking
3. if see_mush. and picking then pick_up_the_mush.
4. if midday and picking then stop_picking
5. if home then END
6. if picking then move_random
7. if not_picking then move_home

A robot picking up mushrooms:

What does the robot do when it
sees a mushroom, but it is

returning home? subsumption architecture:
[Brooks, 1986; Wooldridge, 2002]

2 - Human-like artificial agents 7

Simple hierarchical reactive planning
1. if bla1 and bla2 then SubGoal1
2. if not bla1 and bla3 then SubGoal2

3. if bla4 then SubGoal3

4. if not bla3 and bla2 then SubGoal4
5. if bla1 and bla3 and bla8 then SubGoal5
6. if blabla then SubGoal6
7. if bla2 or (bla3 and not bla7) then

SubGoal7

3.1 if A then Sub2GoalA
3.2 if B then Sub2GoalB

3.3 if C then Sub2GoalC

3.4 if D then Sub2GoalD

.

.

.

• Think hierarchically!
[Bryson, 2001; Nilsson, 1994; etc.]

2 - Human-like artificial agents 8

Simple hierarchical
reactive planning

• Behaviour is decomposed hierarchically
– top-level goals, sub-goals, tasks, atomic actions

• Every reactive plan is expressed by means of a set of
trees

• Every root of a tree corresponds to a top-level goal
– AND trees, AND-OR trees

• How to create a decomposition?

read

cook
draw

watering

explore

eat sleep

2 - Human-like artificial agents 9

Simple hierarchical reactive planning
 (a hierarchical top-down decomposition)

Appetitive Consumatory Taxis Clean

• Find & take
a can

• Fill the can

• Go next to
a dry bed

• Water the
bed

• Empty the
can

• Put down
the can

Watering:

...cycles are possible!

...an ethology model

the garden is
 watered goal:

2 - Human-like artificial agents 10

Simple hierarchical reactive planning
a decomposition example (watering)

1. if garden_watered and cleaned then COMMIT
2. if garden_watered then subGoal_Clean

3. if not_hold_any_can then subGoal_FindTakeCan
4. if can_in_hands and empty then subGoal_FillUpTheCan

5. if know_about_dry_bed & not_stand_nextTo_theBed
then subGoal_GoThere

6. if stand_nextTo_theBed and theBad_dry then
atomicWatering

App.

Clean

Taxi

Cons.

• the highest priority has the goal condition, the second highest is the cleaning
• order the task in the normal/the reverse order [Bryson, 2001]

2 - Human-like artificial agents 11

Simple hierarchical reactive planning
top-level goals

• How to select a top-level goal to perform?
– a schedule + interrupts
– drives + interrupts
– a drama manager (Façade)
– planning and future-directed intentions (BDI)

2 - Human-like artificial agents 12

• Chess-like topology, 2½ D world
• Discrete time (time-steps)

– a step = 20 sec.
• Embodied
• 20 internal drives

– hunger, thirst,...
• 60 atomic actions

– aWalk, aPickUp, aWater, aEat,...
• Two hands + an inventory
• Face no particular direction in the world

– an illusion of orientation is caused by the GUI only
• Understand a simplified version of Czech language
• Driven by scripts in E language

ENTs an example

[Bojar et al., 2002; 2005]

2 - Human-like artificial agents 13

ENTs
system architecture

• 3 independent programs for
Linux
– entiserver (ES): the server of a

virtual world
– entiprohlizec: the graphical user

interface
– ent: the ent's control program

(artificial mind)
• It is possible to instantiate

different world models
– we will use a model of a family

house

2 - Human-like artificial agents 14

Top-level goals
Four intended top-level goals of the gardener…

watering
(true)

eating
(when I'm hungry)

toilet
(when I must go...)

bumming around
(true)

70

50

5

0

30

2 - Human-like artificial agents 15

What is on the top?
Three active goals

watering
(true)

eating
(when I'm hungry)

toilet
(when I must go)

bumming around
(true)

70

50

5

0

30

"eating" script is started
"watering" is interrupted

3 intended
goals

2 - Human-like artificial agents 16

What is on the top?
Bumming around

watering
(true)

eating
(when I am hungry)

toilet
(when I must go)

bumming around
(true)

70

50

5

0

30 trapezoidal priority:
timeout expired,

"bumming around" is started

Ents again

2 - Human-like artificial agents 17

Outline
1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning
• simple hierarchical reactive planning
• PyPOSH example

4. Finite state machines
• basic
• hierarchical
• Probabilistic
• Quake3 hFSM example

5. Conclusion

2 - Human-like artificial agents 18

Finite state machines

2 - Human-like artificial agents 19

FSM & HFSM (1)

• <label, T, script> is a state
– a label is a name of the state
– a script is a code associated with the

state
– T is a set of rules that trigger

transition to another state (i.e.
transition function)

• a is a currently active state

• <label, T, sc> is a state
– a label is a name of the state
– a sc is either a code associated with the

state (i.e. a script), or a set of the names
of the state's substates

– T is a set of rules that trigger transition to
another state (i.e. transition function)

• A is a set of currently active states
– a path from a root-state to a leaf-state

Standard "finite-state machine"
(FSM) is a tuple:

< { <label, T, script> }, a >

Hierarchical "finite-state machine"
(HFSM) is a tuple:

< { <label, T, sc> }, A >

a
a

2 - Human-like artificial agents 20

FSM & HFSM (2)

• FSM and HFSM are computationally equivalent
– HFSM avoids "spaghetti design"

a a

Are finite state machines computationally
equivalent to Touring machines?

b

[Isla, 2005]
[Champandard, 2003]

2 - Human-like artificial agents 21

SRP vs. FSM

1. if ac or bc or dc then C
2. if ab or cb or db then B
3. if ba or ca or da then A
4. if ad or bd or cd then D

a note: zx also tests whether the FSM is in state Z

A B

C D

ab

ac ad

da

dc

db

ba

bc bd

ca
cb

cd

• priorities
• "spaghetti design"

2 - Human-like artificial agents 22

HFSM example
Quake bot

• High level decision
control only

• In each FSM-node,
a bot chooses
among possible
goals associated
with the node

• Standard HFSM

[van Waveren, 2001]
van Waveren (c) 2001

2 - Human-like artificial agents 23

HFSM example
Quake bot

• High level decision
control only

• In each FSM-node,
a bot chooses
among possible
goals associated
with the node

• Standard HFSM
• The if-then rules "in

each node" are
written in C

Observer Intermission

van Waveren (c) 2001

2 - Human-like artificial agents 24

HFSM example
Quake bot

• In each FSM-node, a bot chooses among possible goals
associated with the node
– fuzzy decision (how much do I want to pick this weapon up?)
– long term-goals vs. short term goals

• E.g. "battle fight":
– acquiring enemy
– selecting weapon
– aiming and approaching
– shooting

• Different techniques can be used in each node
– low-level navigation
– voting system
– planning

van Waveren (c) 2001

2 - Human-like artificial agents 25
van Waveren (c) 2001

2 - Human-like artificial agents 26

Probabilistic FSM models

• Probabilistic "finite-state machine" (PFSM) is a tuple:
 < { <label, Tp, script> }, a >
• <label, Tp, script> is a state

– a label is a name of the state
– a script is a code associated with the state
– Tp is a set of rules that trigger a transition to another state with a given

probability
• a is the currently active state

i
0,9[a]

0,1[a]
0,7[a]
1[b]

0,3
[a]

1
[c]

1[c, d]

0,8[e]

0,2[e] 1[a]

2 - Human-like artificial agents 27

Reactive planning - recapitulation

2 - Human-like artificial agents 28

Recapitulation
• Reactive planning is a bunch of methods of driving behaviour of

virtual beings
• Each method determines the next action in every instant in "a

timely fashion"
• SHRP

– if-then rules
– priorities
– AND-OR trees

• FSM
– states
– transitions

2 - Human-like artificial agents 29

Implementation

• Special-purpose languages:
– rules

• JAM [Hubber, 1999]
• E [Bojar et al., 2002]
• PyPOSH [Kwong, 2003]
• ABL [Mateas, 2002]
• (Soar)

– FSM
• AI. Implant...
• Softimage

step
if someone-shoot-at-me do { .. }
if someone-asked-me do { .. }
if I-am-hungry do { .. }
if I-need-toilet do { .. }
if I-am-sleepy do { .. }
step
if someone-shoot-at-me do { .. }
if someone-asked-me do { .. }
if I-am-hungry do { .. }
if I-need-toilet do { .. }
if I-am-sleepy do { .. }
pick-up-mark
if someone-shoot-at-me do { .. }
if someone-asked-me do { .. }
if I-am-hungry do { .. }
if I-need-toilet do { .. }
if I-am-sleepy do { .. }
pick-up-mark
if someone-shoot-at-me do { .. }
...

rationale:

2 - Human-like artificial agents 30

Questions?

2 - Human-like artificial agents 31

References
• BOD, POSH

– Joanna Bryson. The Behavior-Oriented Design of Modular Agent Intelligence. In:
Proceedings of Agent Technologies, Infrastructures, Tools, and Applications for E-Services,
pages 61-79, Springer LNCS 2592, Berlin, Germany, 2003.

– Kwong, A. A Framework for Reactive Intelligence through Agile Component-Based
Behaviours. Master thesis, University of Bath (2003)

– Joanna Bryson. Intelligence by Design: Principles of Modularity and Coordination for
Engineering Complex Adaptive Agents. PhD thesis, Massachusetts Institute of Technology,
2001.

• Gamebots:
– Adobbati, R., Marshall, A. N., Scholer, A., and Tejada, S.: Gamebots: A 3d virtual world test-

bed for multi-agent research. In: Proceedings of the 2nd International Workshop on
Infrastructure for Agents, MAS, and Scalable MAS, Canada (2001)

• ENTs
– O. Bojar, C. Brom, M. Hladík, V. Toman: The Project ENTs: Towards Modeling Human-like

Artificial Agents. In SOFSEM 2005 Communications, pages 111–122, Liptovský Ján, Slovak
Republic, January 2005.

– Project Ent homepage: http://ckl.ms.mff.cuni.cz/~bojar/enti/

2 - Human-like artificial agents 32

References
• FSM

– Waveren, J. M. P. van: The Quake III Arena Bot. Master thesis. Faculty ITS, University of
Technology Delft (2001)

– Champandard, A.J.: AI Game Development: Synthetic Creatures with learning and
Reactive Behaviors. New Riders, USA (2003)

– Softimage, Bahavior: http://www.softimage.com/products/behavior
• Façade, ABL

– Mateas, M.: Interactive Drama, Art and Artificial Intelligence. Ph.D. Dissertation.
Department of Computer Science, Carnegie Mellon University (2002)

• Other
– Brooks, A. R.: Intelligence without reason. In: Proceedings of the 1991 International Joint

Conference on Artificial Intelligence, Sydney (1991) 569-595
– Huber, M. J.: JAM: A BDI-theoretic mobile agent architecture. In: Proceedings of the 3rd

International Conference on Autonomous Agents (Agents'99). Seatle (1999) 236-243
– Soar project: http://www.eecs.umich.edu/~soar/
– Isla, D.: Handling Complexity in the Halo 2 AI. Game Developers Conference, GDC 2005,

http://www.gamasutra.com/gdc2005/features/20050311/isla_01.shtml

http://www.eecs.umich.edu/~soar/

2 - Human-like artificial agents 33

References
• AI & agents

– S. J. Russell and P. Norvig: Artificial Intelligence: a Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ.

– M. Wooldridge: An Introduction to MultiAgent Systems. John Wiley &
Sons, 1995

• Other
– Brooks, A. R.: Intelligence without reason. In: Proceedings of the 1991

International Joint Conference on Artificial Intelligence, Sydney (1991)
569-595

– Huber, M. J.: JAM: A BDI-theoretic mobile agent architecture. In:
Proceedings of the 3rd International Conference on Autonomous
Agents (Agents'99). Seatle (1999) 236-243

2 - Human-like artificial agents 34

POSH

2 - Human-like artificial agents 35

POSH & BOD
• Behavioural oriented design

– behavioural decomposition
• POSH: Parallel-rooted, Ordered Slip-stack Hierarchical

– a method that exploits hierarchical if-then rules
– several languages

• POSH: in lisp or C++
• PyPOSH: Python implementation
• jyPOSH: Jython implementation (interoperates with Java)

[Bryson et al., 2001 - 2006]

2 - Human-like artificial agents 36

PyPOSH in Unreal - architecture

Unreal

Gamebots
API

PyPOSH

PyPOSH
creature

[Kwong, 2003] [IGN Entertainment,
1996-2006] [Adobatti et al., 2000]

2 - Human-like artificial agents 37

Control structure

Behavioural oriented creature

Body

Environment

Agent

"can_27"

"plate_02"

"bread_12"
"door_47"

Image GUI

Sensor Effector Memory

Sensor Effector Memory

Sensor Effector Memory

action selection mechanism,
e.g. POSH reactive planning

2 - Human-like artificial agents 38

Behaviours as objects

• Object
– properties/variables
– methods

• Behaviour
– states/variables (memory)
– primitive elements of the

reactive plan which present
the interface to the behaviour

• senses
• acts

– learning

2 - Human-like artificial agents 39

POSH - control structure I
• Action pattern

– a sequence of actions
– e.g., "baa" and look at it (sheep)

• A competence: { s; s is a competence step }
– steps that can be performed in different orders (i.e., a set of

sequences)
– one of the steps can be a goal step
– the competence returns a value: ┬ if the goal is

accomplished, ┴ if none of its steps fire
– a competence step: <p, r, a, [n]>

• a priority, a releaser, an action, a number of retries
• the action can be another competence

[Bryson, 2001]

2 - Human-like artificial agents 40

POSH - control structure II
• A drive collection: { d; d is a drive element }

– the root of the hierarchy
– a drive element: <p, r, a, A, [f]>

• p – a priority
• r – a releaser
• a – a currently active element of the drive element (a sub-element)
• A – the top element (i.e., a collection, action pattern, or an action) of the drive element

→ slip-stack
• f – a maximum frequency at which this drive element is visited

– e.g., jump every five seconds
– for any cycle of the action selection, only the drive collection itself and at most one

other POSH element will have their releasers examined
• One drive element can suspend temporarily another drive element

– a competence step cannot interrupt another competence step
• When the suspending drive element terminates, the suspended drive element

continues

2 - Human-like artificial agents 41

PyPOSH def init_senses(self):
 self.add_sense("see-player", self.see_player)
 ...

def init_acts(self):
 self.add_act("move-player", self.move-player)
 ...

def see_player(self):
 ...

(RDC life (goal((fail)))
 (drives
 ((hit(trigger(* (hit-object)(is-rotating False))) avoid))
 ((follow(trigger((see-player))) follow-player))
 ((wander(trigger((succeed))) wander-around))
))

(C wander-around (minutes 10) (goal((see-player)))
 (elements
 ((close-enough(trigger((close-to-player))) stop-bot))
 ((move(trigger((see-player))) move-player))
))

top-level

prio: 1
2
3

terminate condition timeout condition

Python

"Lisp"

if then

checking period

2 - Human-like artificial agents 42

PyPOSH def init_senses(self):
 self.add_sense("see-player", self.see_player)
 ...

def init_acts(self):
 self.add_act("move-player", self.move-player)
 ...

def see_player(self):
 ...

(RDC life (goal((fail)))
 (drives
 ((hit(trigger((hit-object)(is-rotating False))) avoid))
 ((follow(trigger((see-player))) follow-player))
 ((wander(trigger((succeed))) wander-around))
))

(C wander-around (minutes 10) (goal((see-player)))
 (elements
 ((close-enough(trigger((close-to-player))) stop-bot))
 ((move(trigger((see-player))) move-player))
))

2 - Human-like artificial agents 43

PyPOSH def init_senses(self):
 self.add_sense("see-player", self.see_player)
 ...

def init_acts(self):
 self.add_act("move-player", self.move-player)
 ...

def see_player(self):
 ...

(RDC life (goal((fail)))
 (drives
 ((hit(trigger((hit-object)(is-rotating False))) avoid))
 ((follow(trigger((see-player))) follow-player))
 ((wander(trigger((succeed))) wander-around))
))

(C wander-around (minutes 10) (goal((see-player)))
 (elements
 ((close-enough(trigger((close-to-player))) stop-bot))
 ((move(trigger((see-player))) move-player))
))

2 - Human-like artificial agents 44

PyPOSH def init_senses(self):
 self.add_sense("see-player", self.see_player)
 ...

def init_acts(self):
 self.add_act("move-player", self.move-player)
 ...

def see_player(self):
 ...

(RDC life (goal((fail)))
 (drives
 ((hit(trigger((hit-object)(is-rotating False))) avoid))
 ((follow(trigger((see-player))) follow-player))
 ((wander(trigger((succeed))) wander-around))
))

(C wander-around (minutes 10) (goal((see-player)))
 (elements
 ((close-enough(trigger((close-to-player))) stop-bot))
 ((move(trigger((see-player))) move-player))
))

	Slide Number 1
	Outline
	If-then rules
	If-then rules
	A thermostat
	Simple reactive planning
	Simple hierarchical reactive planning
	Simple hierarchical reactive planning
	Simple hierarchical reactive planning� (a hierarchical top-down decomposition)
	Simple hierarchical reactive planning�a decomposition example (watering)
	Simple hierarchical reactive planning�top-level goals
	ENTs
	ENTs�system architecture
	Top-level goals�Four intended top-level goals of the gardener…
	What is on the top?�Three active goals
	What is on the top?�Bumming around
	Outline
	Finite state machines
	FSM & HFSM (1)
	FSM & HFSM (2)
	SRP vs. FSM
	HFSM example�Quake bot
	HFSM example�Quake bot
	HFSM example�Quake bot
	Slide Number 25
	Probabilistic FSM models
	Reactive planning - recapitulation
	Recapitulation
	Implementation
	Questions?
	References
	References
	References
	POSH
	POSH & BOD
	PyPOSH in Unreal - architecture
	Behavioural oriented creature
	Behaviours as objects
	POSH - control structure I
	POSH - control structure II
	PyPOSH
	PyPOSH
	PyPOSH
	PyPOSH

