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If-then rules 

if  p  then A   
 
a precondition, an antecedent 

an action, an effect, a consequent... 
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If-then rules 

• A rule fires if its condition holds 
• A reactive plan consist of tens of if-then rules 
• All rules are "evaluated at once" 

– think in parallel! 
• Technically, the parallelism must be 

"transformed" to a serial program. 
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A thermostat 

220oC The regulator is set on 220oC: 
 
1. IF  temperature > 225oC,  
 THEN switch the heater off. 
2. IF  temperature < 215oC,  
  THEN switch the heater on. 

 

Why is the temperature tested for 225 / 215 instead of 220? 
 
What to do when more rules fires in the same instant? 
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Simple reactive planning 
• Assign a priority to each rule: 

# When starts: not at home && be in picking state 

1. if see_obstacle then change_direction 
2. if basketful_of_m. and picking then stop_picking 
3. if see_mush. and picking then pick_up_the_mush. 
4. if midday and picking then stop_picking 
5. if home then END  
6. if picking then move_random  
7. if not_picking then move_home 

A robot picking up mushrooms: 

What does the robot do when it 
sees a mushroom, but it is 

returning home?  subsumption architecture:  
[Brooks, 1986; Wooldridge, 2002] 



2 - Human-like artificial agents 7 

Simple hierarchical reactive planning 
1. if bla1 and bla2 then SubGoal1 
2. if not bla1 and bla3 then SubGoal2 

 

 

3. if bla4 then SubGoal3 
 

 
4. if not bla3 and bla2 then SubGoal4 
5. if bla1 and bla3 and bla8 then SubGoal5 
6. if blabla then SubGoal6 
7. if bla2 or ( bla3 and not bla7 ) then 

SubGoal7 

3.1 if A then Sub2GoalA 
3.2 if B then Sub2GoalB 
 

3.3 if C then Sub2GoalC 
 
3.4 if D then Sub2GoalD 

. 

. 

. 

• Think hierarchically! 
[Bryson, 2001; Nilsson, 1994; etc.] 
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Simple hierarchical 
reactive planning 

• Behaviour is decomposed hierarchically 
– top-level goals, sub-goals, tasks, atomic actions 

• Every reactive plan is expressed by means of a set of 
trees 

• Every root of a tree corresponds to a top-level goal 
– AND trees, AND-OR trees 

• How to create a decomposition? 

read 

cook 
draw 

watering 

explore 

eat sleep 
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Simple hierarchical reactive planning 
 (a hierarchical top-down decomposition) 

Appetitive Consumatory Taxis Clean 

• Find & take 
a can 

• Fill the can 

• Go next to 
a dry bed 

• Water the 
bed 

• Empty the 
can 

• Put down 
the can 

Watering: 

...cycles are possible! 

...an ethology model  

the garden is 
 watered goal: 



2 - Human-like artificial agents 10 

Simple hierarchical reactive planning 
a decomposition example (watering) 

1. if garden_watered and cleaned then COMMIT 
2. if garden_watered then subGoal_Clean 

 

3. if not_hold_any_can then subGoal_FindTakeCan 
4. if can_in_hands and empty then subGoal_FillUpTheCan 

 

5. if know_about_dry_bed & not_stand_nextTo_theBed 
then subGoal_GoThere 
 

6. if stand_nextTo_theBed and theBad_dry then 
atomicWatering 

App. 

Clean 

Taxi 

Cons. 

• the highest priority has the goal condition, the second highest is the cleaning 
• order the task in the normal/the reverse order [Bryson, 2001] 
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Simple hierarchical reactive planning 
top-level goals 

• How to select a top-level goal to perform? 
– a schedule + interrupts 
– drives + interrupts 
– a drama manager (Façade) 
– planning and future-directed intentions (BDI)  
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• Chess-like topology, 2½ D world 
• Discrete time (time-steps)  

– a step = 20 sec. 
• Embodied 
• 20 internal drives  

– hunger, thirst,... 
• 60 atomic actions 

– aWalk, aPickUp, aWater, aEat,... 
• Two hands + an inventory 
• Face no particular direction in the world 

– an illusion of orientation is caused by the GUI only 
• Understand a simplified version of Czech language 
• Driven by scripts in E language 

ENTs  an example 

[Bojar et al., 2002; 2005] 
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ENTs 
system architecture 

• 3 independent programs for 
Linux 
– entiserver (ES): the server of a 

virtual world 
– entiprohlizec: the graphical user 

interface 
– ent: the ent's control program 

(artificial mind) 
• It is possible to instantiate 

different world models 
– we will use a model of a family 

house 
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Top-level goals 
Four intended top-level goals of the gardener… 

watering 
(true) 

eating 
(when I'm hungry) 

toilet 
(when I must go...) 

bumming around 
(true) 

70 

50 

5 

0 

30 
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What is on the top? 
Three active goals 

watering 
(true) 

eating 
(when I'm hungry) 

toilet 
(when I must go) 

bumming around 
(true) 

70 

50 

5 

0 

30 

"eating" script is started 
"watering" is interrupted 

3 intended  
goals 
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What is on the top? 
Bumming around 

watering 
(true) 

eating 
(when I am hungry) 

toilet 
(when I must go) 

bumming around 
(true) 

70 

50 

5 

0 

30 trapezoidal priority: 
timeout expired, 

"bumming around" is started 

Ents again 
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Finite state machines 
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FSM & HFSM (1) 

• <label, T, script> is a state 
– a label is a name of the state 
– a script is a code associated with the 

state 
– T is a set of rules that trigger 

transition to another state (i.e. 
transition function) 

• a is a currently active state 
 

• <label, T, sc> is a state 
– a label is a name of the state 
– a sc is either a code associated with the 

state (i.e. a script), or a set of the names 
of the state's substates 

– T is a set of rules that trigger transition to 
another state (i.e. transition function) 

• A is a set of currently active states 
– a path from a root-state to a leaf-state 

Standard "finite-state machine" 
(FSM) is a tuple:  

< { <label, T, script> }, a > 

Hierarchical "finite-state machine" 
(HFSM) is a tuple: 

< { <label, T, sc> }, A > 

a 
a 
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FSM & HFSM (2) 

• FSM and HFSM are computationally equivalent 
– HFSM avoids "spaghetti design" 

a a 

Are finite state machines computationally 
equivalent to Touring machines? 

b 

[Isla, 2005] 
[Champandard, 2003] 
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SRP vs. FSM 

1. if ac or bc or dc then C 
2. if ab or cb or db then B 
3. if ba or ca or da then A 
4. if ad or bd or cd then D 

 
a note: zx also tests whether the FSM is in state Z 

A B 

C D 

ab 

ac ad 

da 

dc 

db 

ba 

bc bd 

ca 
cb 

cd 

• priorities 
• "spaghetti design" 
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HFSM example 
Quake bot 

• High level decision 
control only 

• In each FSM-node, 
a bot chooses 
among possible 
goals associated 
with the node 

• Standard HFSM 
 
 

[van Waveren, 2001] 
van Waveren (c) 2001 
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HFSM example 
Quake bot 

• High level decision 
control only 

• In each FSM-node, 
a bot chooses 
among possible 
goals associated 
with the node 

• Standard HFSM 
• The if-then rules "in 

each node" are 
written in C 
 

Observer Intermission 

van Waveren (c) 2001 
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HFSM example 
Quake bot 

• In each FSM-node, a bot chooses among possible goals 
associated with the node 
– fuzzy decision (how much do I want to pick this weapon up?) 
– long term-goals vs. short term goals 

• E.g. "battle fight":  
– acquiring enemy 
– selecting weapon 
– aiming and approaching 
– shooting 

• Different techniques can be used in each node 
– low-level navigation 
– voting system 
– planning 

van Waveren (c) 2001 
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Probabilistic FSM models 

• Probabilistic "finite-state machine" (PFSM) is a tuple:  
 < { <label, Tp, script> }, a > 
• <label, Tp, script> is a state 

– a label is a name of the state 
– a script is a code associated with the state 
– Tp is a set of rules that trigger a transition to another state with a given 

probability 
• a is the currently active state 

i 
0,9[a] 

0,1[a] 
0,7[a] 
1[b] 

0,3 
[a] 

1 
[c] 

1[c, d] 

0,8[e] 

0,2[e] 1[a] 
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Reactive planning - recapitulation 



2 - Human-like artificial agents 28 

Recapitulation 
• Reactive planning is a bunch of methods of driving behaviour of 

virtual beings 
• Each method determines the next action in every instant in "a 

timely fashion" 
• SHRP 

– if-then rules 
– priorities 
– AND-OR trees 

• FSM 
– states 
– transitions 



2 - Human-like artificial agents 29 

Implementation 

• Special-purpose languages:  
– rules 

• JAM [Hubber, 1999] 
• E [Bojar et al., 2002] 
• PyPOSH [Kwong, 2003] 
• ABL [Mateas, 2002] 
• ( Soar ) 

– FSM 
• AI. Implant... 
• Softimage 

 

step 
if someone-shoot-at-me do { .. } 
if someone-asked-me do { .. } 
if I-am-hungry do { .. } 
if I-need-toilet do { .. } 
if I-am-sleepy do { .. } 
step 
if someone-shoot-at-me do { .. } 
if someone-asked-me do { .. } 
if I-am-hungry do { .. } 
if I-need-toilet do { .. } 
if I-am-sleepy do { .. } 
pick-up-mark 
if someone-shoot-at-me do { .. } 
if someone-asked-me do { .. } 
if I-am-hungry do { .. } 
if I-need-toilet do { .. } 
if I-am-sleepy do { .. } 
pick-up-mark 
if someone-shoot-at-me do { .. } 
... 

rationale: 
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Questions? 
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POSH 
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POSH & BOD 
• Behavioural oriented design 

– behavioural decomposition 
• POSH: Parallel-rooted, Ordered Slip-stack Hierarchical  

– a method that exploits hierarchical if-then rules 
– several languages 

• POSH: in lisp or C++ 
• PyPOSH: Python implementation  
• jyPOSH: Jython implementation (interoperates with Java) 

[Bryson et al., 2001 - 2006] 
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PyPOSH in Unreal - architecture 

Unreal 

Gamebots  
API 

PyPOSH 

PyPOSH 
creature 

[Kwong, 2003] [IGN Entertainment,  
1996-2006] [Adobatti et al., 2000] 
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Control structure 

Behavioural oriented creature 

Body 

Environment 

Agent 

"can_27" 

"plate_02" 

"bread_12" 
"door_47" 

Image GUI 

Sensor Effector Memory 

Sensor Effector Memory 

Sensor Effector Memory 

action selection mechanism, 
e.g. POSH reactive planning 
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Behaviours as objects 

• Object 
– properties/variables 
– methods 

• Behaviour 
– states/variables (memory) 
– primitive elements of the 

reactive plan which present 
the interface to the behaviour 

• senses 
• acts 

– learning 
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POSH - control structure I 
• Action pattern 

– a sequence of actions 
– e.g., "baa" and look at it (sheep) 

• A competence: { s; s is a competence step }  
– steps that can be performed in different orders (i.e., a set of 

sequences)  
– one of the steps can be a goal step 
– the competence returns a value: ┬ if the goal is 

accomplished, ┴ if none of its steps fire 
– a competence step: <p, r, a, [n]>  

• a priority, a releaser, an action, a number of retries 
• the action can be another competence 

[Bryson, 2001] 
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POSH - control structure II 
• A drive collection: { d; d is a drive element } 

– the root of the hierarchy 
– a drive element: <p, r, a, A, [f]> 

• p – a priority 
• r – a releaser 
• a – a currently active element of the drive element (a sub-element) 
• A – the top element (i.e., a collection, action pattern, or an action) of the drive element 

→ slip-stack 
• f – a maximum frequency at which this drive element is visited 

– e.g., jump every five seconds 
– for any cycle of the action selection, only the drive collection itself and at most one 

other POSH element will have their releasers examined 
• One drive element can suspend temporarily another drive element 

– a competence step cannot interrupt another competence step 
• When the suspending drive element terminates, the suspended drive element 

continues 
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PyPOSH def init_senses( self ): 
    self.add_sense( "see-player", self.see_player ) 
    ... 
 
def init_acts( self ): 
    self.add_act( "move-player", self.move-player ) 
    ... 
 
def see_player( self ): 
    ... 
 
 
(RDC life (goal( (fail) ) ) 
    ( drives  
        (( hit( trigger( * (hit-object)(is-rotating False) ) ) avoid )) 
        (( follow( trigger( (see-player) ) ) follow-player )) 
        (( wander( trigger( (succeed) ) ) wander-around )) 
    ) ) 
 
(C wander-around (minutes 10) (goal( (see-player) ) ) 
    ( elements 
        (( close-enough( trigger( (close-to-player) ) ) stop-bot )) 
        (( move( trigger( (see-player) ) ) move-player )) 
    ) ) 

top-level 

prio:  1 
2 
3 

terminate condition timeout condition 

Python 

"Lisp" 

if                           then          

checking period 
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PyPOSH def init_senses( self ): 
    self.add_sense( "see-player", self.see_player ) 
    ... 
 
def init_acts( self ): 
    self.add_act( "move-player", self.move-player ) 
    ... 
 
def see_player( self ): 
    ... 
 
 
(RDC life (goal( (fail) ) ) 
    ( drives  
        (( hit( trigger( (hit-object)(is-rotating False) ) ) avoid )) 
        (( follow( trigger( (see-player) ) ) follow-player )) 
        (( wander( trigger( (succeed) ) ) wander-around )) 
    ) ) 
 
(C wander-around (minutes 10) (goal( (see-player) ) ) 
    ( elements 
        (( close-enough( trigger( (close-to-player) ) ) stop-bot )) 
        (( move( trigger( (see-player) ) ) move-player )) 
    ) ) 
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PyPOSH def init_senses( self ): 
    self.add_sense( "see-player", self.see_player ) 
    ... 
 
def init_acts( self ): 
    self.add_act( "move-player", self.move-player ) 
    ... 
 
def see_player( self ): 
    ... 
 
 
(RDC life (goal( (fail) ) ) 
    ( drives  
        (( hit( trigger( (hit-object)(is-rotating False) ) ) avoid )) 
        (( follow( trigger( (see-player) ) ) follow-player )) 
        (( wander( trigger( (succeed) ) ) wander-around )) 
    ) ) 
 
(C wander-around (minutes 10) (goal( (see-player) ) ) 
    ( elements 
        (( close-enough( trigger( (close-to-player) ) ) stop-bot )) 
        (( move( trigger( (see-player) ) ) move-player )) 
    ) ) 
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PyPOSH def init_senses( self ): 
    self.add_sense( "see-player", self.see_player ) 
    ... 
 
def init_acts( self ): 
    self.add_act( "move-player", self.move-player ) 
    ... 
 
def see_player( self ): 
    ... 
 
 
(RDC life (goal( (fail) ) ) 
    ( drives  
        (( hit( trigger( (hit-object)(is-rotating False) ) ) avoid )) 
        (( follow( trigger( (see-player) ) ) follow-player )) 
        (( wander( trigger( (succeed) ) ) wander-around )) 
    ) ) 
 
(C wander-around (minutes 10) (goal( (see-player) ) ) 
    ( elements 
        (( close-enough( trigger( (close-to-player) ) ) stop-bot )) 
        (( move( trigger( (see-player) ) ) move-player )) 
    ) ) 
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