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 Programming languages are Turing-complete 
 => There is “nothing” you could not do! 
 
 Yeah, but would you use Assembler to write an event-

driven GUI application? 
Now I want to create button of different shape, but it should 

retain all existing features of the button I already have … 
hmm … with no OOP features though! 

 

 
 Would you use Java or C# to mimic SQL queries? 

Now I want to left-join table A and B using this condition and 
group results by column C! 

 
But nevermind - let’s try it! 
 

 





“ BOD is a methodology for developing control 
of complex intelligent agents, such as virtual 
reality characters, … “ 

-- J.J.Bryson, University of Bath, UK 
http://www.cs.bath.ac.uk/~jjb/web/bod.html 

 
Core idea: 
1. Decompose behavior in a top-down fashion 
2. Implement it bottom-up 
3. Test, Revise, Reiterate 

http://www.cs.bath.ac.uk/~jjb/web/bod.html
















How do we perceive the code? 



A := 1; 
B := A + 1; 
write(B); 

What does this do? 



A := 1; 
B := A + 1; 
write(B); 

No magic. 

Outputs “2”. 



socket = acceptConnection(); 
socket.sendLine(“HELLO”); 
line = socket.readLine(); 

What does this do? 



socket = acceptConnection(); 
socket.sendLine(“HELLO”); 
line = socket.readLine(); 

Bit of magic 

acceptConnection() hangs the thread and waits for client 
connection, than it continues by greeting the client and 
again hangs the thread when waiting for reply. 



goToDog(); 
crouch(); 
hugTheDog(); 

What does this do? 



goToDog(); 
crouch(); 
hugTheDog(); 

Well… sequence of actions? 

Well there is no reason to start petting the dog if we did not get to it first, 
this must be a sequence => respective methods then must act the same 
way as the acceptConnection(); hanging the thread. 



If (inDanger()) getAway() 
else 
If (seeCuteDog()) petTheDog() 
else 
If (seeAPerson() && inTheMood()) hangOut() 
else wanderAround() 

What does this do? 

Priorities! 
That’s her problem! 



Can we make these snippets of code 
reusable by putting them into 

procedures/methods? 



A := 1; 
B := A + 1; 
write(B); 

Let’s see… 



procedure StrangeProc(); 
begin 
    var A: integer; 
    var B: integer; 
    A := 1; 
    B := A + 1; 
    write(B); 
end; 

No problem here. 



socket = acceptConnection(); 
socket.sendLine(“HELLO”); 
line = socket.readLine(); 

Let’s see 



void waitForConnection() { 
    Socket socket; 
    String line; 
    socket = acceptConnection(); 
    socket.sendLine(“HELLO”); 
    line = socket.readLine(); 
} 

This works too. 



void waitForConnection() { 
    Socket socket; 
    String line; 
    socket = acceptConnection(); 
    socket.sendLine(“HELLO”); 
    line = socket.readLine(); 
} 

This works too. 

We need thread-pooling right, but still 
okey (don’t mind NIOs for a while). 



goToDog(); 
crouch(); 
hugTheDog(); 

How about this sequence of actions? 



void petTheDog () { 
    goToDog(); 
    crouch(); 
    hugTheDog(); 
} 

Yeah, still working.... 



void petTheDog () { 
    goToDog(); 
    crouch(); 
    hugTheDog(); 
} 

Yeah, still working... 

We have to treat it the same way as the 
server thread from previous example. 



If (inDanger()) getAway() 
else If (seeCuteDog()) petTheDog() 
else If (seeAPerson() && inTheMood())  
  hangOut() 
else wanderAround() 

What about this? 



void freeTime() { 
  If (inDanger()) getAway() 
  else If (seeCuteDog()) petTheDog() 
  else If (seeAPerson() && inTheMood()) 
  hangOut() 
  else wanderAround() 
} 

Is this working? 



Let me see… 

During the first call, it happened, that she was not 
in danger but she saw a cute dog …  
… so she stuck somewhere within petTheDog(). 

void freeTime() { 
  If (inDanger()) getAway() 
  else If (seeCuteDog()) petTheDog() 
  else If (seeAPerson() && inTheMood()) 
  hangOut() 
  else wanderAround() 
} 



THIS DOES NOT WORK! 

Then the dog turned into a freakish monster! 
… but she hugged it nevertheless. 

void freeTime() { 
  If (inDanger()) getAway() 
  else If (seeCuteDog()) petTheDog() 
  else If (seeAPerson() && inTheMood()) 
  hangOut() 
  else wanderAround() 
} 



Procedural Scripting  
The Switching does not play well with Durative Actions 

void freeTime() { 
  If (inDanger()) getAway() 
  else If (seeCuteDog()) petTheDog() 
  else If (seeAPerson() && inTheMood())  
 hangOut() 
  else wanderAround() 
} 

1. 3. 2. 

petTheDog() petTheDog() getAway() 



Procedural Scripting  
Stack-based code representation 

Single instruction 
pointer per thread. 

Single stack per 
thread. 



 Highly reactive 
 Only a few 

(parameterized) easily 
interruptible actions 

vs. 

 Also Reactive 
 Lot of actions 
 Lot action sequences 

that must be managed 

=> PS is OK => PS is not a good    
          choice 



1. FSM-based techniques 
 “No” stack 
 Shifting locality of decision making process 
 

2. Tree-based techniques 
 + “Stack-traversing” 
 

3. BDI-like 
 Multiple-stacks, Blackboard-based 



1. FSM-based techniques 
 “No” stack 
 Shifting locality of decision making process 
 

2. Tree-based techniques 
 + “Stack-traversing” 
 

3. BDI-like 
 Multiple-stacks, Blackboard-based 





 “No” stack … just “a single state” 
 Decision making is made “within state” 
 That’s why is this Turing complete as well! 

 Very fast execution, easy to implement, can 
be visualized 
 



https://www.youtube.com/watch?v=HRDc3dSKFeA  (4:40) 

https://www.youtube.com/watch?v=HRDc3dSKFeA


 What is missing? 
 “Almost dead” animation 

 How to integrate it in there? 
 Ad-hoc code that lies “somewhere” 

 



Ants are foraging in 2D cage trying to find 
leaves while avoiding your cursor. 



However, we have “switching-problem” here!  
Priorities! 



Any “FSM-like” solution to this? 
=> Hierarchical FSMs 



Looking good? Why we do not just… 



Gotcha! 



Still okayish… But What about our FPS bot… 



Parallel action 

Priority list with 
4 elements 

Parallel action 



 States is target sFSM, 
   a  is an OnTransition activity. 
A A triple of activities (OnEnter, OnInternal, OnExit). 

No “accepting” 
state(s) …  

not needed 



May use 
reasoning! 

Activities are 
Turing-complete 



 States is target sFSM, 
   a  is an OnTransition activity. 
A A triple of activities (OnEnter, OnInternal, OnExit). 

Hierarchical 
variant via 

nesting sFSM 

Here we can 
reset nested 
sFSM state 



Parallel action 

Priority list with 
4 elements 

Parallel action 







But certainly we DO NOT WANT TO! 
Yes! 

Parallel action 

Priority list with 
4 elements 

Parallel action 



 Fuzzy transitions 
 Using fuzzy variables for conditions 

 

 Probabilistic FSM 
 Choosing random transition 
 

 
⇒ Shares the same characteristics 
⇒ Great for “sequences with choice points” 
⇒ Bad for reactive stuff that has to arbitrate 

between multiple (>3) priorities or having 
parallel actions 
 

 



1. FSM-based techniques 
 “No” stack 
 Shifting locality of decision making process 
 

2. Tree-based techniques 
 + “Stack-traversing” 
 

3. BDI-like 
 Multiple-stacks, Blackboard-based 



http://www.slideshare.net/StavrosVassos/aigames-lecture1part2 
 
Slides 14-18 

http://www.slideshare.net/StavrosVassos/aigames-lecture1part2


 Two types of BTs 
 With “node-pointer” 
 Root traversal 



 Lot of node-types 
 Sequence, Selector, Loop, Parallel 
 Gates (condition, count-based, time-based, 

dis/enabler) 
 Reinterpret the result 

 
 Possible behavior coordination 
 N agents “executes” the same tree 
 Gates limiting number of agents 
 Join-nodes (agent is waiting for coordination) 



 Root traversal trees ~ “Stack-traversing” 
 Blacksmith example 



 Root traversal trees ~ “Stack-traversing” 



 Root traversal trees ~ “Stack-traversing” 
 That’s what standard If-Then rules are 

doing! 
 But the stack lacks “statefulness” 

 
⇒ Are Behavior Trees to Procedural Scripting 

what SQL is to Cobol? 
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