
Human-like Artifical Agents

Faculty of Mathematics and Physics
Charles University in Prague
29th March 2016

Scripting Virtual Brain

 Fully vs. Partially observable
 Episodic vs. Sequential
 Static vs. Dynamic
 Single vs. Multi agent
 Deterministic vs. Stochastic
 Discrete vs. Continuous
 Known vs. Unknown
 Turn-based vs. Real-time
 Noiseless vs. Noisy

 Fully vs. Partially observable
 Episodic vs. Sequential
 Static vs. Dynamic
 Single vs. Multi agent
 Deterministic vs. Stochastic (weakly)
 Discrete vs. Continuous
 Known vs. Unknown (weakly)
 Turn-based vs. Real-time
 Noiseless vs. Noisy

 Fully vs. Partially observable
 Episodic vs. Sequential
 Static vs. Dynamic
 Single vs. Multi agent
 Deterministic vs. Stochastic (weakly)
 Discrete vs. Continuous
 Known vs. Unknown (weakly)
 Turn-based vs. Real-time
 Noiseless vs. Noisy

 Programming languages are Turing-complete
 => There is “nothing” you could not do!

 Yeah, but would you use Assembler to write an event-

driven GUI application?
Now I want to create button of different shape, but it should

retain all existing features of the button I already have …
hmm … with no OOP features though!

 Would you use Java or C# to mimic SQL queries?

Now I want to left-join table A and B using this condition and
group results by column C!

But nevermind - let’s try it!

“ BOD is a methodology for developing control
of complex intelligent agents, such as virtual
reality characters, … “

-- J.J.Bryson, University of Bath, UK
http://www.cs.bath.ac.uk/~jjb/web/bod.html

Core idea:
1. Decompose behavior in a top-down fashion
2. Implement it bottom-up
3. Test, Revise, Reiterate

http://www.cs.bath.ac.uk/~jjb/web/bod.html

How do we perceive the code?

A := 1;
B := A + 1;
write(B);

What does this do?

A := 1;
B := A + 1;
write(B);

No magic.

Outputs “2”.

socket = acceptConnection();
socket.sendLine(“HELLO”);
line = socket.readLine();

What does this do?

socket = acceptConnection();
socket.sendLine(“HELLO”);
line = socket.readLine();

Bit of magic

acceptConnection() hangs the thread and waits for client
connection, than it continues by greeting the client and
again hangs the thread when waiting for reply.

goToDog();
crouch();
hugTheDog();

What does this do?

goToDog();
crouch();
hugTheDog();

Well… sequence of actions?

Well there is no reason to start petting the dog if we did not get to it first,
this must be a sequence => respective methods then must act the same
way as the acceptConnection(); hanging the thread.

If (inDanger()) getAway()
else
If (seeCuteDog()) petTheDog()
else
If (seeAPerson() && inTheMood()) hangOut()
else wanderAround()

What does this do?

Priorities!
That’s her problem!

Can we make these snippets of code
reusable by putting them into

procedures/methods?

A := 1;
B := A + 1;
write(B);

Let’s see…

procedure StrangeProc();
begin
 var A: integer;
 var B: integer;
 A := 1;
 B := A + 1;
 write(B);
end;

No problem here.

socket = acceptConnection();
socket.sendLine(“HELLO”);
line = socket.readLine();

Let’s see

void waitForConnection() {
 Socket socket;
 String line;
 socket = acceptConnection();
 socket.sendLine(“HELLO”);
 line = socket.readLine();
}

This works too.

void waitForConnection() {
 Socket socket;
 String line;
 socket = acceptConnection();
 socket.sendLine(“HELLO”);
 line = socket.readLine();
}

This works too.

We need thread-pooling right, but still
okey (don’t mind NIOs for a while).

goToDog();
crouch();
hugTheDog();

How about this sequence of actions?

void petTheDog () {
 goToDog();
 crouch();
 hugTheDog();
}

Yeah, still working....

void petTheDog () {
 goToDog();
 crouch();
 hugTheDog();
}

Yeah, still working...

We have to treat it the same way as the
server thread from previous example.

If (inDanger()) getAway()
else If (seeCuteDog()) petTheDog()
else If (seeAPerson() && inTheMood())
 hangOut()
else wanderAround()

What about this?

void freeTime() {
 If (inDanger()) getAway()
 else If (seeCuteDog()) petTheDog()
 else If (seeAPerson() && inTheMood())
 hangOut()
 else wanderAround()
}

Is this working?

Let me see…

During the first call, it happened, that she was not
in danger but she saw a cute dog …
… so she stuck somewhere within petTheDog().

void freeTime() {
 If (inDanger()) getAway()
 else If (seeCuteDog()) petTheDog()
 else If (seeAPerson() && inTheMood())
 hangOut()
 else wanderAround()
}

THIS DOES NOT WORK!

Then the dog turned into a freakish monster!
… but she hugged it nevertheless.

void freeTime() {
 If (inDanger()) getAway()
 else If (seeCuteDog()) petTheDog()
 else If (seeAPerson() && inTheMood())
 hangOut()
 else wanderAround()
}

Procedural Scripting
The Switching does not play well with Durative Actions

void freeTime() {
 If (inDanger()) getAway()
 else If (seeCuteDog()) petTheDog()
 else If (seeAPerson() && inTheMood())
 hangOut()
 else wanderAround()
}

1. 3. 2.

petTheDog() petTheDog() getAway()

Procedural Scripting
Stack-based code representation

Single instruction
pointer per thread.

Single stack per
thread.

 Highly reactive
 Only a few

(parameterized) easily
interruptible actions

vs.

 Also Reactive
 Lot of actions
 Lot action sequences

that must be managed

=> PS is OK => PS is not a good
 choice

1. FSM-based techniques
 “No” stack
 Shifting locality of decision making process

2. Tree-based techniques
 + “Stack-traversing”

3. BDI-like
 Multiple-stacks, Blackboard-based

1. FSM-based techniques
 “No” stack
 Shifting locality of decision making process

2. Tree-based techniques
 + “Stack-traversing”

3. BDI-like
 Multiple-stacks, Blackboard-based

 “No” stack … just “a single state”
 Decision making is made “within state”
 That’s why is this Turing complete as well!

 Very fast execution, easy to implement, can
be visualized

https://www.youtube.com/watch?v=HRDc3dSKFeA (4:40)

https://www.youtube.com/watch?v=HRDc3dSKFeA

 What is missing?
 “Almost dead” animation

 How to integrate it in there?
 Ad-hoc code that lies “somewhere”

Ants are foraging in 2D cage trying to find
leaves while avoiding your cursor.

However, we have “switching-problem” here!
Priorities!

Any “FSM-like” solution to this?
=> Hierarchical FSMs

Looking good? Why we do not just…

Gotcha!

Still okayish… But What about our FPS bot…

Parallel action

Priority list with
4 elements

Parallel action

 States is target sFSM,
 a is an OnTransition activity.
A A triple of activities (OnEnter, OnInternal, OnExit).

No “accepting”
state(s) …

not needed

May use
reasoning!

Activities are
Turing-complete

 States is target sFSM,
 a is an OnTransition activity.
A A triple of activities (OnEnter, OnInternal, OnExit).

Hierarchical
variant via

nesting sFSM

Here we can
reset nested
sFSM state

Parallel action

Priority list with
4 elements

Parallel action

But certainly we DO NOT WANT TO!
Yes!

Parallel action

Priority list with
4 elements

Parallel action

 Fuzzy transitions
 Using fuzzy variables for conditions

 Probabilistic FSM
 Choosing random transition

⇒ Shares the same characteristics
⇒ Great for “sequences with choice points”
⇒ Bad for reactive stuff that has to arbitrate

between multiple (>3) priorities or having
parallel actions

1. FSM-based techniques
 “No” stack
 Shifting locality of decision making process

2. Tree-based techniques
 + “Stack-traversing”

3. BDI-like
 Multiple-stacks, Blackboard-based

http://www.slideshare.net/StavrosVassos/aigames-lecture1part2

Slides 14-18

http://www.slideshare.net/StavrosVassos/aigames-lecture1part2

 Two types of BTs
 With “node-pointer”
 Root traversal

 Lot of node-types
 Sequence, Selector, Loop, Parallel
 Gates (condition, count-based, time-based,

dis/enabler)
 Reinterpret the result

 Possible behavior coordination
 N agents “executes” the same tree
 Gates limiting number of agents
 Join-nodes (agent is waiting for coordination)

 Root traversal trees ~ “Stack-traversing”
 Blacksmith example

 Root traversal trees ~ “Stack-traversing”

 Root traversal trees ~ “Stack-traversing”
 That’s what standard If-Then rules are

doing!
 But the stack lacks “statefulness”

⇒ Are Behavior Trees to Procedural Scripting

what SQL is to Cobol?

1. FSM-based techniques
 “No” stack
 Shifting locality of decision making process

2. Tree-based techniques
 + “Stack-traversing”

3. BDI-like
 Multiple-stacks, Blackboard-based

	Reactive Planning – Part II
	3D V-Environments�What can be said?
	3D V-Environments �Hard to “search or plan”
	3D V-Environments �=> (Semi) Reactive Action-Selection
	IVA in Video Games�”Action-selection”
	Reactive Planning�Can’t we just script everything?
	Procedural Scripting�UT2004 FPS Bot Example
	Behavior Oriented Design (by J.J.Bryson)�Agent Behavior Development Methodology
	Procedural Scripting�UT2004 FPS Bot Example
	Procedural Scripting�UT2004 FPS Bot Example – BOD Applied
	Procedural Scripting�More Actions in Less Reactive Example
	Procedural Scripting �The Effect of Durative Actions
	Procedural Scripting�OOP Style
	Procedural Scripting�OOP Style
	Procedural Scripting
	How do we perceive the code?
	A := 1;�B := A + 1;�write(B);
	A := 1;�B := A + 1;�write(B);
	socket = acceptConnection();�socket.sendLine(“HELLO”);�line = socket.readLine();
	socket = acceptConnection();�socket.sendLine(“HELLO”);�line = socket.readLine();
	goToDog();�crouch();�hugTheDog();
	goToDog();�crouch();�hugTheDog();
	If (inDanger()) getAway()�else�If (seeCuteDog()) petTheDog()�else�If (seeAPerson() && inTheMood()) hangOut()�else wanderAround()
	Can we make these snippets of code reusable by putting them into procedures/methods?
	A := 1;�B := A + 1;�write(B);
	procedure StrangeProc();�begin� var A: integer;� var B: integer;� A := 1;� B := A + 1;� write(B);�end;
	socket = acceptConnection();�socket.sendLine(“HELLO”);�line = socket.readLine();
	void waitForConnection() {� Socket socket;� String line;� socket = acceptConnection();� socket.sendLine(“HELLO”);� line = socket.readLine();�}
	void waitForConnection() {� Socket socket;� String line;� socket = acceptConnection();� socket.sendLine(“HELLO”);� line = socket.readLine();�}
	goToDog();�crouch();�hugTheDog();
	void petTheDog () {� goToDog();� crouch();� hugTheDog();�}
	void petTheDog () {� goToDog();� crouch();� hugTheDog();�}
	If (inDanger()) getAway()�else If (seeCuteDog()) petTheDog()�else If (seeAPerson() && inTheMood()) 			hangOut()�else wanderAround()
	void freeTime() {� If (inDanger()) getAway()� else If (seeCuteDog()) petTheDog()� else If (seeAPerson() && inTheMood()) 		hangOut()� else wanderAround()�}
	void freeTime() {� If (inDanger()) getAway()� else If (seeCuteDog()) petTheDog()� else If (seeAPerson() && inTheMood()) 		hangOut()� else wanderAround()�}
	void freeTime() {� If (inDanger()) getAway()� else If (seeCuteDog()) petTheDog()� else If (seeAPerson() && inTheMood()) 		hangOut()� else wanderAround()�}
	Procedural Scripting �The Switching does not play well with Durative Actions
	Procedural Scripting �Stack-based code representation
	Reactive Planning�Procedural Scripting… No Good?
	Reactive Planning�Procedural Scripting… What else?
	Reactive Planning�Procedural Scripting… What else?
	Reactive Planning �Finite State Machine
	Finite State Machines �Example
	Finite State Machines�Classic tool of Game AI!
	Finite State Machines�Classic tool of Game AI!
	Finite State Machines�Another example
	Finite State Machines�Another example
	Finite State Machines�Another example
	Finite State Machines�Hierachical
	Finite State Machines�Stack-based
	Finite State Machines�Hierachical
	Finite State Machines�Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Other modifications
	Reactive Planning�Procedural Scripting… What else?
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Procedural Scripting… What else?

