
Human-like Artifical Agents

Faculty of Mathematics and Physics
Charles University in Prague
29th March 2016

Scripting Virtual Brain

 Fully vs. Partially observable
 Episodic vs. Sequential
 Static vs. Dynamic
 Single vs. Multi agent
 Deterministic vs. Stochastic
 Discrete vs. Continuous
 Known vs. Unknown
 Turn-based vs. Real-time
 Noiseless vs. Noisy

 Fully vs. Partially observable
 Episodic vs. Sequential
 Static vs. Dynamic
 Single vs. Multi agent
 Deterministic vs. Stochastic (weakly)
 Discrete vs. Continuous
 Known vs. Unknown (weakly)
 Turn-based vs. Real-time
 Noiseless vs. Noisy

 Fully vs. Partially observable
 Episodic vs. Sequential
 Static vs. Dynamic
 Single vs. Multi agent
 Deterministic vs. Stochastic (weakly)
 Discrete vs. Continuous
 Known vs. Unknown (weakly)
 Turn-based vs. Real-time
 Noiseless vs. Noisy

 Programming languages are Turing-complete
 => There is “nothing” you could not do!

 Yeah, but would you use Assembler to write an event-

driven GUI application?
Now I want to create button of different shape, but it should

retain all existing features of the button I already have …
hmm … with no OOP features though!

 Would you use Java or C# to mimic SQL queries?

Now I want to left-join table A and B using this condition and
group results by column C!

But nevermind - let’s try it!

“ BOD is a methodology for developing control
of complex intelligent agents, such as virtual
reality characters, … “

-- J.J.Bryson, University of Bath, UK
http://www.cs.bath.ac.uk/~jjb/web/bod.html

Core idea:
1. Decompose behavior in a top-down fashion
2. Implement it bottom-up
3. Test, Revise, Reiterate

http://www.cs.bath.ac.uk/~jjb/web/bod.html

How do we perceive the code?

A := 1;
B := A + 1;
write(B);

What does this do?

A := 1;
B := A + 1;
write(B);

No magic.

Outputs “2”.

socket = acceptConnection();
socket.sendLine(“HELLO”);
line = socket.readLine();

What does this do?

socket = acceptConnection();
socket.sendLine(“HELLO”);
line = socket.readLine();

Bit of magic

acceptConnection() hangs the thread and waits for client
connection, than it continues by greeting the client and
again hangs the thread when waiting for reply.

goToDog();
crouch();
hugTheDog();

What does this do?

goToDog();
crouch();
hugTheDog();

Well… sequence of actions?

Well there is no reason to start petting the dog if we did not get to it first,
this must be a sequence => respective methods then must act the same
way as the acceptConnection(); hanging the thread.

If (inDanger()) getAway()
else
If (seeCuteDog()) petTheDog()
else
If (seeAPerson() && inTheMood()) hangOut()
else wanderAround()

What does this do?

Priorities!
That’s her problem!

Can we make these snippets of code
reusable by putting them into

procedures/methods?

A := 1;
B := A + 1;
write(B);

Let’s see…

procedure StrangeProc();
begin
 var A: integer;
 var B: integer;
 A := 1;
 B := A + 1;
 write(B);
end;

No problem here.

socket = acceptConnection();
socket.sendLine(“HELLO”);
line = socket.readLine();

Let’s see

void waitForConnection() {
 Socket socket;
 String line;
 socket = acceptConnection();
 socket.sendLine(“HELLO”);
 line = socket.readLine();
}

This works too.

void waitForConnection() {
 Socket socket;
 String line;
 socket = acceptConnection();
 socket.sendLine(“HELLO”);
 line = socket.readLine();
}

This works too.

We need thread-pooling right, but still
okey (don’t mind NIOs for a while).

goToDog();
crouch();
hugTheDog();

How about this sequence of actions?

void petTheDog () {
 goToDog();
 crouch();
 hugTheDog();
}

Yeah, still working....

void petTheDog () {
 goToDog();
 crouch();
 hugTheDog();
}

Yeah, still working...

We have to treat it the same way as the
server thread from previous example.

If (inDanger()) getAway()
else If (seeCuteDog()) petTheDog()
else If (seeAPerson() && inTheMood())
 hangOut()
else wanderAround()

What about this?

void freeTime() {
 If (inDanger()) getAway()
 else If (seeCuteDog()) petTheDog()
 else If (seeAPerson() && inTheMood())
 hangOut()
 else wanderAround()
}

Is this working?

Let me see…

During the first call, it happened, that she was not
in danger but she saw a cute dog …
… so she stuck somewhere within petTheDog().

void freeTime() {
 If (inDanger()) getAway()
 else If (seeCuteDog()) petTheDog()
 else If (seeAPerson() && inTheMood())
 hangOut()
 else wanderAround()
}

THIS DOES NOT WORK!

Then the dog turned into a freakish monster!
… but she hugged it nevertheless.

void freeTime() {
 If (inDanger()) getAway()
 else If (seeCuteDog()) petTheDog()
 else If (seeAPerson() && inTheMood())
 hangOut()
 else wanderAround()
}

Procedural Scripting
The Switching does not play well with Durative Actions

void freeTime() {
 If (inDanger()) getAway()
 else If (seeCuteDog()) petTheDog()
 else If (seeAPerson() && inTheMood())
 hangOut()
 else wanderAround()
}

1. 3. 2.

petTheDog() petTheDog() getAway()

Procedural Scripting
Stack-based code representation

Single instruction
pointer per thread.

Single stack per
thread.

 Highly reactive
 Only a few

(parameterized) easily
interruptible actions

vs.

 Also Reactive
 Lot of actions
 Lot action sequences

that must be managed

=> PS is OK => PS is not a good
 choice

1. FSM-based techniques
 “No” stack
 Shifting locality of decision making process

2. Tree-based techniques
 + “Stack-traversing”

3. BDI-like
 Multiple-stacks, Blackboard-based

1. FSM-based techniques
 “No” stack
 Shifting locality of decision making process

2. Tree-based techniques
 + “Stack-traversing”

3. BDI-like
 Multiple-stacks, Blackboard-based

 “No” stack … just “a single state”
 Decision making is made “within state”
 That’s why is this Turing complete as well!

 Very fast execution, easy to implement, can
be visualized

https://www.youtube.com/watch?v=HRDc3dSKFeA (4:40)

https://www.youtube.com/watch?v=HRDc3dSKFeA

 What is missing?
 “Almost dead” animation

 How to integrate it in there?
 Ad-hoc code that lies “somewhere”

Ants are foraging in 2D cage trying to find
leaves while avoiding your cursor.

However, we have “switching-problem” here!
Priorities!

Any “FSM-like” solution to this?
=> Hierarchical FSMs

Looking good? Why we do not just…

Gotcha!

Still okayish… But What about our FPS bot…

Parallel action

Priority list with
4 elements

Parallel action

 States is target sFSM,
 a is an OnTransition activity.
A A triple of activities (OnEnter, OnInternal, OnExit).

No “accepting”
state(s) …

not needed

May use
reasoning!

Activities are
Turing-complete

 States is target sFSM,
 a is an OnTransition activity.
A A triple of activities (OnEnter, OnInternal, OnExit).

Hierarchical
variant via

nesting sFSM

Here we can
reset nested
sFSM state

Parallel action

Priority list with
4 elements

Parallel action

But certainly we DO NOT WANT TO!
Yes!

Parallel action

Priority list with
4 elements

Parallel action

 Fuzzy transitions
 Using fuzzy variables for conditions

 Probabilistic FSM
 Choosing random transition

⇒ Shares the same characteristics
⇒ Great for “sequences with choice points”
⇒ Bad for reactive stuff that has to arbitrate

between multiple (>3) priorities or having
parallel actions

1. FSM-based techniques
 “No” stack
 Shifting locality of decision making process

2. Tree-based techniques
 + “Stack-traversing”

3. BDI-like
 Multiple-stacks, Blackboard-based

http://www.slideshare.net/StavrosVassos/aigames-lecture1part2

Slides 14-18

http://www.slideshare.net/StavrosVassos/aigames-lecture1part2

 Two types of BTs
 With “node-pointer”
 Root traversal

 Lot of node-types
 Sequence, Selector, Loop, Parallel
 Gates (condition, count-based, time-based,

dis/enabler)
 Reinterpret the result

 Possible behavior coordination
 N agents “executes” the same tree
 Gates limiting number of agents
 Join-nodes (agent is waiting for coordination)

 Root traversal trees ~ “Stack-traversing”
 Blacksmith example

 Root traversal trees ~ “Stack-traversing”

 Root traversal trees ~ “Stack-traversing”
 That’s what standard If-Then rules are

doing!
 But the stack lacks “statefulness”

⇒ Are Behavior Trees to Procedural Scripting

what SQL is to Cobol?

1. FSM-based techniques
 “No” stack
 Shifting locality of decision making process

2. Tree-based techniques
 + “Stack-traversing”

3. BDI-like
 Multiple-stacks, Blackboard-based

	Reactive Planning – Part II
	3D V-Environments�What can be said?
	3D V-Environments �Hard to “search or plan”
	3D V-Environments �=> (Semi) Reactive Action-Selection
	IVA in Video Games�”Action-selection”
	Reactive Planning�Can’t we just script everything?
	Procedural Scripting�UT2004 FPS Bot Example
	Behavior Oriented Design (by J.J.Bryson)�Agent Behavior Development Methodology
	Procedural Scripting�UT2004 FPS Bot Example
	Procedural Scripting�UT2004 FPS Bot Example – BOD Applied
	Procedural Scripting�More Actions in Less Reactive Example
	Procedural Scripting �The Effect of Durative Actions
	Procedural Scripting�OOP Style
	Procedural Scripting�OOP Style
	Procedural Scripting
	How do we perceive the code?
	A := 1;�B := A + 1;�write(B);
	A := 1;�B := A + 1;�write(B);
	socket = acceptConnection();�socket.sendLine(“HELLO”);�line = socket.readLine();
	socket = acceptConnection();�socket.sendLine(“HELLO”);�line = socket.readLine();
	goToDog();�crouch();�hugTheDog();
	goToDog();�crouch();�hugTheDog();
	If (inDanger()) getAway()�else�If (seeCuteDog()) petTheDog()�else�If (seeAPerson() && inTheMood()) hangOut()�else wanderAround()
	Can we make these snippets of code reusable by putting them into procedures/methods?
	A := 1;�B := A + 1;�write(B);
	procedure StrangeProc();�begin� var A: integer;� var B: integer;� A := 1;� B := A + 1;� write(B);�end;
	socket = acceptConnection();�socket.sendLine(“HELLO”);�line = socket.readLine();
	void waitForConnection() {� Socket socket;� String line;� socket = acceptConnection();� socket.sendLine(“HELLO”);� line = socket.readLine();�}
	void waitForConnection() {� Socket socket;� String line;� socket = acceptConnection();� socket.sendLine(“HELLO”);� line = socket.readLine();�}
	goToDog();�crouch();�hugTheDog();
	void petTheDog () {� goToDog();� crouch();� hugTheDog();�}
	void petTheDog () {� goToDog();� crouch();� hugTheDog();�}
	If (inDanger()) getAway()�else If (seeCuteDog()) petTheDog()�else If (seeAPerson() && inTheMood()) 			hangOut()�else wanderAround()
	void freeTime() {� If (inDanger()) getAway()� else If (seeCuteDog()) petTheDog()� else If (seeAPerson() && inTheMood()) 		hangOut()� else wanderAround()�}
	void freeTime() {� If (inDanger()) getAway()� else If (seeCuteDog()) petTheDog()� else If (seeAPerson() && inTheMood()) 		hangOut()� else wanderAround()�}
	void freeTime() {� If (inDanger()) getAway()� else If (seeCuteDog()) petTheDog()� else If (seeAPerson() && inTheMood()) 		hangOut()� else wanderAround()�}
	Procedural Scripting �The Switching does not play well with Durative Actions
	Procedural Scripting �Stack-based code representation
	Reactive Planning�Procedural Scripting… No Good?
	Reactive Planning�Procedural Scripting… What else?
	Reactive Planning�Procedural Scripting… What else?
	Reactive Planning �Finite State Machine
	Finite State Machines �Example
	Finite State Machines�Classic tool of Game AI!
	Finite State Machines�Classic tool of Game AI!
	Finite State Machines�Another example
	Finite State Machines�Another example
	Finite State Machines�Another example
	Finite State Machines�Hierachical
	Finite State Machines�Stack-based
	Finite State Machines�Hierachical
	Finite State Machines�Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Other modifications
	Reactive Planning�Procedural Scripting… What else?
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Procedural Scripting… What else?

