Faculty of Mathematics and Physics
Charles University in Prague
29t March 2016

Human-like Artifical Agents

Reactive Planning — Part

Scripting Virtual Brain

3D V-Environments

What can be said?

Fully vs. Partially observable
Episodic vs. Sequential
Static vs. Dynamic

Single vs. Multi agent
Deterministic vs. Stochastic
Discrete vs. Continuous
Known vs. Unknown
Turn-based vs. Real-time
Noiseless vs. Noisy

3D V-Environments

Hard to “search or plan”

Partially observable

Sequential

Dynamic

Multi agent

Stochastic (weakly)
Continuous
Unknown (weakly)
Real-time
Noiseless

3D V-Environments

=> (Semi) Reactive Action-Selection

Partially observable

Sequential

Dynamic

Multi agent

Stochastic (weakly)
Continuous
Unknown (weakly)
Real-time
Noiseless

IVA InVideo Games

"Action-selection”

NPC component /NPC Layer/ Simulation || Low-level reasoning || High-level reasoning

Game Engine

High . NPC
;? Annotations BT, HTN, FSM, STRIPS (FEAR
Maps ‘ Objects | :
§ Data filters for . Decision : . ~Steerings (Reynolds),
‘ub, human like inpu ; - : RVO, ORCA
0 " - :
S e Reasoning / Memoy | State
£ v/ Perc S s /
|5 - :
IS Sensors Fee—e S > Navigation : |
@ ST : - :
SlElc|B=]o ~-.._>__ Locomotion
g g AEIRN: Synchronous “\ Animation Sel.| Path Following
G execution ‘> Animation
Y @
Low Input < s > Output
Environment, body state changes Body actions
Game mechanics, Physics, Animation, Rendering

Reactive Planning

Can’t we just script everything?

Programming languages are Turing-complete
=>There is "nothing” you could not do!

Yeah, but would you use Assembler to write an event-
driven GUI application?

Now | want to create button of different shape, but it should
retain all existing features of the button | already have ...
hmm ... with no OOP features though!

Would you use Java or C# to mimic SQL queries?

Now | want to left-join table A and B using this condition and
group results by column C!

But nevermind - let’s try it!

Procedural Scripting

UT2004 FPS Bot Example

FIL,I e e e e P

¥

if { weaponry. hasLDadEdweapun(UT2994ItemTypE LIGHTNING_GLIW)
| | weaponry.hasLoadedWeapon{UT2884TltemType . HINTGUNY) {

if (weaponry.hasloadediWeapon (UT2884ItemType . LIGHTNING GUN)) weaponry.changeleapon(UT2884TtemType. LIGHTNING GUN) ;
else if (weaponry.hasLoadedieapon{UT2884TtemType. MINIGLIN)) weaponry . changelWeapon (UT2884I temType . MINIGUN) ;

TNING GUN) || weaponry.haslLoadedWeapon(UT2ee4IltemType. MINIGUNY) |

if (info.getHealth() < 58) {
Item health = fwMap.getNearestItem(items.getSpawnedIltems (UT2884ItemType.HEALTH _PACK) .values(),
info.getNearestNavPoint());

if pere———rr—
navigation.navigate(health);

for (ItemType weaponType : ItemType.Category.WEAPON.getTypes()) {
if {(weaponry.hasWeapon{weaponType)) continue;

weapon = fwMap.getNearestItem(items.getallItems (weaponType).values(), info.getNearestNavPoint());
if {(weapon != null)} break;

Lﬁavlgatlnn nau1gate(weapnn getNaanlnt(jj,|

|navigatinn.navigate(naanints.getRandnmNaanint(jj;\

Behavior Oriented Design (byJ.1.8ryson)

Agent Behavior Development Methodology

"BOD is a methodology for developing control
of complex intelligent agents, such as virtual
reality characters, ... "

-- J.J.Bryson, University of Bath, UK
http://www.cs.bath.ac.uk/~jjb/web/bod.html

Core idea:
Decompose behavior in a top-down fashion
Implement it bottom-up
Test, Revise, Reiterate

http://www.cs.bath.ac.uk/~jjb/web/bod.html

Procedural Scripting

UT2004 FPS Bot Example

public void logic()} throws PogamutException {
if { weaponry.hasLoadedWeapon(UT2884ItemType. LIGHTNING GLIV)
| | weaponry.hasLoadedWeapon{UT2884TltemType . HINTGUNY) {
if (weaponry.hasloadediWeapon (UT2884ItemType . LIGHTNING GUN)) weaponry.changeleapon(UT2884TtemType. LIGHTNING GUN) ;
else if (weaponry.hasLoadedieapon{UT2884TtemType. MINIGLIN)) weaponry . changelWeapon (UT2884I temType . MINIGUN) ;

¥
Player player = players.getNearestVisiblePlayer();
if (player != null) {
shoot.shoot{player);
if (weaponry.hasLoadedWeapon(UT2884ItemType. LIGHTNING GUN) || weaponry.hasloadedWeapon(UT2ee4ltemType. MINIGUNY) |
navigation.navigate(player);
return;

h

if (info.getHealth() < 58) {
Item health = fwMap.getNearestItem(items.getSpawnedIltems (UT2884ItemType.HEALTH _PACK) .values(),
info.getNearestNavPoint());
if (health != null) {
navigation.navigate(health);
return;
h
h
if (navigaticon.isNavigating(}) return;
Item weapon = nullj;
for (ItemType weaponType : ItemType.Category.WEAPON.getTypes()) {
if {(weaponry.hasWeapon{weaponType)) continue;
weapon = fwMap.getNearestItem(items.getallItems (weaponType).values(), info.getNearestNavPoint());
if {(weapon != null)} break;
h
if (weapon != null) {
navigation.navigate(weapon.getNavPoint());
return;
b

navigation.navigate(navPoints.getRandomNavPoint());

Procedural Scripting
UT2004 FPS Bot Example - BOD Applied

r'—_. —
|r"|..|r1 orihewkeapon

Fecturn,

|runRandnmly(jﬂ

}

Procedural Scripting
More Actions In Less Reactive Example

Procedural Scripting

The Effect of Durative Actions
private static enu

private int actionIndex = 8;

public ActionResult logi . throws PogamutException {

switch(actionIndex)

3 =
LT " U

recurn ActionResult. RUNNING;
actionIndex = @; return ActionResult.FAIL;
actionIndex = 1; break;

rn ActionResult.RUNNING;
actionIndex = 8; return ActionResult.FAIL;
actionIndex = 2; break;

cCase 2

1 ActicnResult. RUNNING:

actionIndex = 8; return ActionResult.FAIL;
actionIndex = 8; return ActionResult.DONE;

b

return ActionResult.FAIL;

Procedural Scripting

OOP Style

private Sequence petThelogSequence = new Sequence(goToDog, crouch, petTheDog);

public ActionResult logicSequence2() throws PogamutExcepticon {
return petTheDogSequence.execute();

}

Procedural Scripting

OOP Style

private Action EatFDDdFrDmFridgE = new Eat(foodFromFridge);

private Action e = new Eat(foodFromRestaurant);

private Sequence = new Sequence(golobog, crouch, petTheDog);

private Sequence = new Sequence(goToRestaurant, orderFood, eatFoodFromRestaurnt);

private
Root root = new Root(
new PrioritySwitch
new SwitchItem|
new SwitchItem|

seefFriend grew—Semmemmme—t—— Faiend, hailFriend, talkToFriend)),
SEEDDg,
sHungPy,

|

public void logic3() throws PogamutException {
root.execute();
b

Procedural Scripting

How do we perceive the code?

What does this do?

A:=1;
B:=A+1;
write(B);

A:=1;
B:=A+1;
write(B);

Outputs “2”.

socket = acceptConnection();
socket.sendLine(“HELLO”);
line = socket.readLine();

socket = acceptConnection();
socket.sendLine(“HELLO”);
line = socket.readLine();

acceptConnection() hangs the thread and waits for client
connection, than it continues by greeting the client and
again hangs the thread when waiting for reply.

What does this do?

goToDog();
crouch();
hugTheDog();

goToDog();
crouch();
hugTheDog();

Well there is no reason to start petting the dog if we did not get to it first,
this must be a sequence => respective methods then must act the same
way as the acceptConnection(); hanging the thread.

What does this do?

If (inDanger()) getAway()

else
If (seeCuteDog()) petTheDog()

else
If (seeAPerson() && inTheMood()) hangOut()

else wanderAround()

Priorities!

That’s her problem!

Can we make these snippets of code
reusable by putting them into
procedures/methods?

A:=1;
B:=A+1;
write(B);

procedure StrangeProc();
begin

A:=1;
B:=A+1;
write(B);

end;

socket = acceptConnection();
socket.sendLine(“HELLO”);
line = socket.readLine();

void waitForConnection() {

socket = acceptConnection();
socket.sendLine(“HELLO”);
line = socket.readLine();

}

void waitForConnection() {

socket = acceptConnection();
socket.sendLine(“HELLO”);
line = socket.readLine();

}

We need thread-pooling right, but still
okey (don’t mind NIOs for a while).

How about this sequence of actions?

goToDog();
crouch();
hugTheDog();

void petTheDog () {
goToDog();

crouch();
hugTheDog();

}

void petTheDog () {
goToDog();

crouch();
hugTheDog();

}

We have to treat it the same way as the
server thread from previous example.

If (inDanger()) getAway()
else If (seeCuteDog()) petTheDog()
else If (seeAPerson() && inTheMood())

hangOut()
else wanderAround()

void freeTime() {
If (inDanger()) getAway()
else If (seeCuteDog()) petTheDog()
else If (seeAPerson() && inTheMood())
hangOut()
else wanderAround()

}

Let me see...

void freeTime() {
If (inDanger()) getAway()
else If (seeCuteDog()) petTheDog()
else If (seeAPerson() && inTheMood())
hangOut()
else wanderAround()

} »

During the first call, it happened, that she was not
in danger but she saw a cute dog ...
... S0 she stuck somewhere within petTheDog().

THIS DOES NOT WORK!

void freeTime() {
If (inDanger()) getAway()
else If (seeCuteDog()) petTheDog()
else If (seeAPerson() && inTheMood())
hangOut() -
else wanderAround()

}

Then the dog turned into a freakish monster!
... but she hugged it nevertheless.

Procedural Scripting

The Switching does not play well with Durative Actions

void freeTime() {
If (inDanger()) getAway()
else If (seeCuteDog()) petTheDog()
else If (seeAPerson() && inTheMood())
hangOut()
else wanderAround()

petTheDog() petTheDog()

Procedural Scripting

Stack-based code representation

Lower addresses & . .
Variable C

Variable B
Variable A
Return address > Stack frame of function
Parameter p1

Corresponding C code:

Parameter p2
Parameter p3 int function(int pl, int p2, int p3)
SR
Some other value ‘4 int A, B, C;

L J

.)
.

Value

Value

Higher addresses | Bottom of stack

Single instruction
pointer per thread.

Single stack per

thread.

Reactive Planning
Procedural Scripting... No Good?

Highly reactive Also Reactive

Only a few Lot of actions
(parameterized) easily Lot action sequences
interruptible actions that must be managed

=>PSis nota good

=>PSis OK choice

Reactive Planning

Procedural Scripting... What else?

FSM-based techniques
"No” stack

Shifting locality of decision making process

Tree-based techniques
+ “Stack-traversing”

BDI-like
Multiple-stacks, Blackboard-based

Reactive Planning

Procedural Scripting... What else?

FSM-based techniques
"No” stack

Shifting locality of decision making process

Tree-based techniques
+ “Stack-traversing”

BDI-like
Multiple-stacks, Blackboard-based

Reactive Planning

Finite State Machine

healthpoints
are low
|
@ find aid 7 evade
found ;
_ player is
aid idle player is

attacking back

K“' wander @ attack

player is out
of sight

Finite State Machines

Example

"No” stack ... just “a single state”
Decision making is made “within state”

That's why is this Turing complete as well!
Very fast execution, easy to implement, can
be visualized rstpons

are low

@ find aid | N 7" evade

found ;
’ player is
aid idle player is
attacking back

K“ wander @ attack
v
t

Finite State Machines
Classic tool of Game Al!

https://www.youtube.com/watch?v=HRDc3dSKFeA

https://www.youtube.com/watch?v=HRDc3dSKFeA

Finite State Machines

Classic tool of Game Al!

Elv in Start shooting Stop shooting
y Move right Move down

Start shooting Stop shooting
Move left Move up
What is missing?

“"Almost dead” animation
How to integrate it in there?

Ad-hoc code that lies "“somewhere”

Finite State Machines

Another example

Ants are foraging in 2D cage trying to find
leaves while avoiding your cursor.

& runAway/()

cursor_distance <= 120

cursor_distance = 120

leaf_distance <= 10

//_\
ﬁ findLeaf() /fﬁ\ goHome()

S~

home _distance <= 10

Finite State Machines

Another example

However, we have “switching-problem” here!
Priorities!

run away T o
. iy moause cursor
oy - -
\\\ < di
!
NN
maouse cursor Nx‘
is near
mouse cursor

is near \ O\

mouse cursor
is distant

LR
leaf is near 1A

 ~
ﬁ" find leaf /ﬁ\\ go home

SN~

arrived at home

Finite State Machines

Another example

Any “FSM-like” solution to this?
=> Hierarchical FSMs

run away T o
. iy moause cursor
oy - -
\\\ < di
!
NN
maouse cursor Nx‘
is near
mouse cursor

is near \ O\

mouse cursor
is distant

LR
leaf is near 1A

ﬁ" find leaf /ﬁ\\ go home

SN~

arrived at home

Finite State Machines

Hierachical

ﬁ find ﬂ /m [go home
_____/
arri t home

mouse cursor is near

Foraging state /\ Fleeing state

[Find Leaf]
at home
Run Away
hag leaf

Go Gome]

mouse cursor is distant

Looking good? Why we do not just...

Finite State Machines

Stack-based

Gotcha!

public

1f

1f

1f

volid antLegic() {

(mouseCursorNear())
runAway () ;

return;

(hasLeaf()) {
goHome () ;

return;

(a2tHome= ()) {
dropTheLeaf () ;

return;

run away

find ﬂ /m [go home

{

“xhﬁﬁ_ﬂ#ﬁj/

Finite State Machines

Hierachical

run away

mouse cursor is near

Foraging state

ﬁ find ﬂ

arrived at

[Find Leaf]

at home
hag leaf

Go Gome]

Still okayish...

Fleeing state

[Run Away]

mouse cursor is distant

But What about our FPS bot...

Finite State Machines

Hierachical

public wvoid logicBOD() throws PogamutException {
N. if (hasGoodlLoadedWeapon()) {

S ensureGoodieaponSelected(); Parallel action
v }
.L:L if (hasAdversary()) {
shootAdversary();
',,S if (hasGoodLoadedWeapon()) {]
-§ pursueAdversary(); Parallel action
return;
2 }
= }
— if (hasLowHealth() && knowHealthLocation()) {
v runForHealth();
o return;
2 }~
E if (canGetNewkeapon()) {
v runForNewkeapon() ;
g return;
c + Priority list with
8 runRandomly(); 4 elements

Finite State Machines

Sequential Hierachical

Def. 13. Sequential Finite-state Machine (sFSM) Behavior

- —_— & & - N " t. "
Definition: (States, init, script) ost:::f:; _Tg

States A non-empty finite set of sSFSM states. A

init € S, an initial state.

script Associated sFSM script used by sFSM activities.

Runtime: (state)

state Current state of sFSM, initial value: init.

Finite State Machines

Sequential Hierachical

Def. 14. Sequential Finite-state Machine State

(T, A)

May use
I |
T An ordered list of transitions. reasoning:
A transition is a triple (c, s, a):

¢ a transition condition (boolean expression),

s

s € States is target sFSM, Activities are
Turing-complete

a Isan OnTransition activity.

e

A A triple of activities (OnEnter, Oninternal, OnExit).

et

Finite State Machines

Sequential Hierachical

Alg. 2. Sequential Finite-state Machine Action-Selection

procedure sFSM-ASM (sFSM)

01: for each (Transition t in sFSM.state.T)
02 : if (t.c)
03: sFSM.state.OnExit.run()
04: t.0OnTransition.run()
Here we can
05: t.s.0nEnter.run()
reset nested
06: sFSM.state = t.s sFSM state
07: return
08: sFSM.state.OnInternal.run()
Hierarchical
variant via

nesting sFSM

Finite State Machines

Sequential Hierachical

A. public wvoid logicBOD() throws PogamutException {

if (hasGoodlLoadedWeapon()) { .
US) ensureGoodieaponSelected(); Parallel action
L }
ﬁ if (hasAdversary()) {
shootAdversary();
',,S if (hasGoodLoadedWeapon()) {]
-§ pursueAdversary(); Parallel action
return;
2 }
= }
— if (hasLowHealth() && knowHealthLocation()) {
v runForHealth();
.g return;
h
E if (canGetNewkeapon()) {
v runForNewkeapon() ;
g return;
c + Priority list with
8 runRandomly(); 4 elements

Finite State Machines

Sequential Hierachical

logicBOD

Oninternal:
if (hasGoodLoadedWeapon(})
ensureGoodWeaponSelected()

... run nested sFSM ...
hasGoodLoadedWeapon()

v

ADVERSARY & GOOD WEAPOCN (initial) ADVERSARY & NO GOOD WEAPON
Oninternal: »| Onlinternal:
shootAdversary() | shootAdversary()
pursueAdversary(} thasAdversary() || ... run nested sFSM ...
lhasGoodLoadedWeapon()

lhasLowHealth() ||

LOW-HEALTH (initial)] ! GetNewWW
knowHealthLocation() [oy New weapon | ConcetNewWeapon() o, \bom RUN
Onlinternal: = ol | > ol |
| runFarHealth() < ninternal: < ninternal:
hasAdversary() hasLowHealth{) && runForMNewWeapon() canGetNewWeapon() runRandomly()
» knowHealthLocation(}
hasAdversary() &&
lhasGoodLaodedWeapaon()
Y thasLowHealth() ||
IhasLowHea
LOW-HEALTH f lcanGetNewW,
tknowhealthLocation() | GeT NEW WEAPON canGetNewWeapan() - o\ NDOM RUN
Onlinternal: - >
runForHealth() < Onlinternal: < Onlnternal:
hasLowHeslth{) && runFardewWeapon() canGetNewWeapon() runRandomly()

knowHealthLocation()

Finite State Machines

Sequential Hierachical

logicBOD

Oninternal:
if (hasGoodLoadedWeapon())
ensureGondWeaponSelected()

... run nested sFSM ...
hasGoodLoadedWeapan()

v

ADVERSARY & GOOD WEAFON (initial) ADVERSARY & NO GOOD WEAPON
Oninternal: »| Oninternal:
shootAdversary() | shootAdversary() hasLowHealth{) &&
pursueAdversary(} thasAdversary() || ... run nested sFSM ... knowHealthLocation()
lhasGoodLoadedWeapon(}
L A 3 +
hasAdversany() && . lhasLowHealth() ||
hasGoodLoadedWeapan() LOWHEALTH (il | nowHealthLocation) [T newweapon | " CetNewWeapon() o or oM RUN
Oninternal: - Oninterna > onintorna
runForHealth() < ninternal: «< ninternal:
thasAdversary() hasLowHealth() && runFarNewWeapon() canGetNewWeapon() runRandomly()
» knowHealthLocation()
hasAdversary(} && Y Y
IhasGoodLaodedWeapon(}
hasAdversary() && hasAdversary() &&
lhasGoodLaodedWeapon() lhasGoodLoadedWeapon()
Y lhasLowHealth(} ||
lhasLowHea
LOW-HEALTH tknowHealthLocation(} | et NEW WEAPON teanGetNewiWeapon() ' \NDOM RUN
Onlnternal: > >
runForHealth() < Oninternal: - Cninternal:
i hasLowHealth{) && runForMewWeapon() canGetNewWeapon() runRandomly()
knowHealthLocation()
hasLowHealth{) &&
) hasAdversary() &&
knowHealthLocat
nawHealthlocation() hasGoodLoadedWeapon()
hasAdversary() &&

hasGoodLoadedWeapaon()

Finite State Machines

Sequential Hierachical

A. public wvoid logicBOD() throws PogamutException {

if (hasGoodlLoadedWeapon()) { .
US) ensureGoodieaponSelected(); Parallel action
L }
ﬁ if (hasAdversary()) {
shootAdversary();
',,S if (hasGoodLoadedWeapon()) { .
-§ pursueAdversary(}: Parallel action
return;
N !
S)
— if (hasLowHealth() && knowHealthLocation()) {
v runForHealth();
.g return;
IS / Priority list with
if (canGetNewwWeapon()) 1
v runForNewkeapon() ; 4 elements
g return;
c }
8 runRandomly(); Yes!

But certainly we DO NOT WANT TO!

Finite State Machines

Other modifications

Fuzzy transitions
Using fuzzy variables for conditions

Probabilistic FSM

Choosing random transition

Shares the same characteristics
Great for "sequences with choice points”

Bad for reactive stuff that has to arbitrate
between multiple (>3) priorities or having
parallel actions

Reactive Planning

Procedural Scripting... What else?

FSM-based techniques
"No” stack

Shifting locality of decision making process

Tree-based techniques
+ “Stack-traversing”

BDI-like
Multiple-stacks, Blackboard-based

Reactive Planning

Behavior Trees

http://www.slideshare.net/StavrosVassos/aigames-lectureipart2

Slides 14-18

Door | [Move

| open? | | into room

- Door _
..|ucked? .

| todoor |

=

i —
4
=

" Unlock

door

Move
~into room

Kick
door

Door

| | opent

http://www.slideshare.net/StavrosVassos/aigames-lecture1part2

Reactive Planning

Behavior Trees

Two types of BTs
With “node-pointer”

Root traversal
ROOT ROOT Node-pointer
O =)=
A N — N
= T=) =] =
~_ ~_

RESULT RESULT
(Running, Succeed, Failed) (Succeed, Failed)

Reactive Planning

Behavior Trees

Lot of node-types
Sequence, Selector, Loop, Parallel

Gates (condition, count-based, time-based,
dis/enabler)

Reinterpret the result

Possible behavior coordination
N agents “"executes” the same tree
Gates limiting number of agents
Join-nodes (agent is waiting for coordination)

Reactive Planning

Behavior Trees

Root traversal trees ~ “"Stack-traversing”
Blacksmith example

e (O 0—@-~

ii Cleaned Up
<>

PUT OUT FIRE

STORE INGOT

STORE ITEM

GO HOME

Melting Ingot
in Hands

&

FORGE ITEM

GET INGOT

At Home &&

Ingot in Hands
<"

PUT INGOT TO FIRE

Ingot in Fire

e

Ingot melting

<>

+[TAKE INGOT OUT OF FIRE]

GO TO ANVIL

PICK UP HAMMER

PUT INGOT ON ANVIL

FORGE

DROP HAMMER

@74 FIND INGOT

() tem =ingot

GO TO FIREPLACE

PUT INGOT TO FIRE

PICK UP INGOT

Know Ingat Pasitian

WALK AROUND HOUSE]

PUTOUTFIRE |%

GO HOME
LIGHT THE FIRE —= |

AT MARKET | >

Reactive Planning

Behavior Trees

Root traversal trees ~ “"Stack-traversing”
That's what standard If-Then rules are

doing!

But the stack lacks “statefulness”

Are Behavior Trees to Procedural Scripting
what SQL is to Cobol?

Reactive Planning

Procedural Scripting... What else?

FSM-based techniques
"No” stack

Shifting locality of decision making process

Tree-based techniques
+ “Stack-traversing”

BDI-like
Multiple-stacks, Blackboard-based

	Reactive Planning – Part II
	3D V-Environments�What can be said?
	3D V-Environments �Hard to “search or plan”
	3D V-Environments �=> (Semi) Reactive Action-Selection
	IVA in Video Games�”Action-selection”
	Reactive Planning�Can’t we just script everything?
	Procedural Scripting�UT2004 FPS Bot Example
	Behavior Oriented Design (by J.J.Bryson)�Agent Behavior Development Methodology
	Procedural Scripting�UT2004 FPS Bot Example
	Procedural Scripting�UT2004 FPS Bot Example – BOD Applied
	Procedural Scripting�More Actions in Less Reactive Example
	Procedural Scripting �The Effect of Durative Actions
	Procedural Scripting�OOP Style
	Procedural Scripting�OOP Style
	Procedural Scripting
	How do we perceive the code?
	A := 1;�B := A + 1;�write(B);
	A := 1;�B := A + 1;�write(B);
	socket = acceptConnection();�socket.sendLine(“HELLO”);�line = socket.readLine();
	socket = acceptConnection();�socket.sendLine(“HELLO”);�line = socket.readLine();
	goToDog();�crouch();�hugTheDog();
	goToDog();�crouch();�hugTheDog();
	If (inDanger()) getAway()�else�If (seeCuteDog()) petTheDog()�else�If (seeAPerson() && inTheMood()) hangOut()�else wanderAround()
	Can we make these snippets of code reusable by putting them into procedures/methods?
	A := 1;�B := A + 1;�write(B);
	procedure StrangeProc();�begin� var A: integer;� var B: integer;� A := 1;� B := A + 1;� write(B);�end;
	socket = acceptConnection();�socket.sendLine(“HELLO”);�line = socket.readLine();
	void waitForConnection() {� Socket socket;� String line;� socket = acceptConnection();� socket.sendLine(“HELLO”);� line = socket.readLine();�}
	void waitForConnection() {� Socket socket;� String line;� socket = acceptConnection();� socket.sendLine(“HELLO”);� line = socket.readLine();�}
	goToDog();�crouch();�hugTheDog();
	void petTheDog () {� goToDog();� crouch();� hugTheDog();�}
	void petTheDog () {� goToDog();� crouch();� hugTheDog();�}
	If (inDanger()) getAway()�else If (seeCuteDog()) petTheDog()�else If (seeAPerson() && inTheMood()) 			hangOut()�else wanderAround()
	void freeTime() {� If (inDanger()) getAway()� else If (seeCuteDog()) petTheDog()� else If (seeAPerson() && inTheMood()) 		hangOut()� else wanderAround()�}
	void freeTime() {� If (inDanger()) getAway()� else If (seeCuteDog()) petTheDog()� else If (seeAPerson() && inTheMood()) 		hangOut()� else wanderAround()�}
	void freeTime() {� If (inDanger()) getAway()� else If (seeCuteDog()) petTheDog()� else If (seeAPerson() && inTheMood()) 		hangOut()� else wanderAround()�}
	Procedural Scripting �The Switching does not play well with Durative Actions
	Procedural Scripting �Stack-based code representation
	Reactive Planning�Procedural Scripting… No Good?
	Reactive Planning�Procedural Scripting… What else?
	Reactive Planning�Procedural Scripting… What else?
	Reactive Planning �Finite State Machine
	Finite State Machines �Example
	Finite State Machines�Classic tool of Game AI!
	Finite State Machines�Classic tool of Game AI!
	Finite State Machines�Another example
	Finite State Machines�Another example
	Finite State Machines�Another example
	Finite State Machines�Hierachical
	Finite State Machines�Stack-based
	Finite State Machines�Hierachical
	Finite State Machines�Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Sequential Hierachical
	Finite State Machines�Other modifications
	Reactive Planning�Procedural Scripting… What else?
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Behavior Trees
	Reactive Planning�Procedural Scripting… What else?

