Human-like artificlal creatures

5. Belief-Desire-Intention

Cyril Brom

Faculty of Mathematics and Physics
Charles University in Prague
brom@ksvi .mff.cuni.cz

(c) 412006

7 - Human-like artificial agents

Outline

Practical reasoning and Belief Desire
Intention

Implementation
Jam, Jason, GOAL

Practical reasoning

A model of decision making. Practical reasoning is a
reasoning directed towards actions

— what to do (deliberative reasoning)
— how to do it (means-ends reasoning)

Practical reasoning is not theoretical reasoning!
— problem-solving vs. how to buy a ticket

Limited computational resources

The central concept of practical reasoning is a triad "belief
— desire — intention”

— the state of a BDI creature in any given moment is (Bel, Des, Int).
Originally, Bratman offered a framework for assesment of
an agent rationality

— however, it is implementable

— probably the first was the Procedural Reasoning System
Standford)

[Bratman, 1987]

Beliefs

e BDI architecture contains explicit representation
of Beliefs, Desires, Intentions

e Beliefs represent information the agent has about
its current environment ("environmental
memory")

— may be false

Intentions and desires

Intentions present-directed (now) vs. future-directed vs. policy-based
VS. ...
Intentions are adopted / committed desires

— desires are future agent's possibilities

— intentions are states (of mind) that the agent has committed to trying to
achieve

— I've decided to drink a milk shake vs. | desire to drink a shake, but I'm fat.
Intentions towards goals vs. towards means

Intentions:
— persist (but sometimes, intentions must be dropped)
— drive means-ends reasoning
— constrain future deliberation
— influence beliefs upon which future practical reasoning is based

The problem how often to reconsider intentions and eventually drop
some is the problem of balancing between pro-active (goal-directed)
and reactive (event driven) behaviour. Different types (static/dynamic)
of environments require different types of reasoning

Abstract interpreter

e The state of a BDI agent in any given moment s (B, D, I)
— current beliefs, desires, intentions

do
Il generate new possibilities
options <« option-generator (events, B, D, 1)

/I select the best opportunities to perform
selected-options « deliberate(options, B, D, 1)

/[adopt a selected opportunity as a subintention, or execute its actions
I « 1 U selected-options[non-atomic]
execute(selected-optionsfatomic])

get-new-external-events()

drop-successftul-goals(B, D, 1)
drop-impossible-goals(B, D, 1)

[Sing et al., 1999]

until quit

Abstract interpreter

Beliefs

Perception Events

External Beliefs
Events
Beliefs

Selected Event Flans

Internal
Events

Relevant
Plans

4
Unify

Z
Execute Action

Selected
Intention

Context Applicable Intended Intention
Plans & Means
N |
A N Intentions |
\\ - . | Update
Intentions pugm S : Nau?r | Intention
Subplan™ - /ntention |
h _
el MNew

7 - Human-like artificial agents

BDI Interpreter — notes

Typically operates with prescripted plans and an intentional
stack

Plans are stored structures that determines how to achieve an
intention

— preconditions: a body of the plan is believed to be an option whenever
its invocation condition / precondition are satisfied

— atomic actions
— generation of a new goal that can be adopted as a subintention
— means-ends are not performed typically

Intentional stack holds all adopted intentions / subintentions
Deliberation

— with respect to the time-constrains
— random, priorities or meta-level reasoning

activi’v~ Al

object-2) pbbject-3 Aobject-4
N

11}
activ'gy A2

Is the creature able to

answer the uastior

what it is going to do
this afternoon?

\

o \ BDI Interpreter

- hotes

It (i.e., "a typical BDI
implementaion") resembles
reactive AND-OR trees

It is actually a robust reactive
architecture
— except of deliberation

It operates only with present-
directed intentions

Jack, JAM, Jason

Jason / JAM intentional stack

Intention Intertion Intention Intertion
Thread A, Thread B Thread C Thread D
[Top-Tevelgoal A] [[op-levelgoal I:i] [rop-levelgoal &] [Top-levelgoal O]
h J h J v

Intention A Intention C Intention D
utility 105 utility 305 utility 1.1
| =ubgoal G I | Subgoal O I

Intention D1
utilty 236

| Subgoal O I
Intention DZ
utilty 2.2

7 - Human-like artificial agents

10

FACTS:
FACT
FACT
FACT
FACT
FACT
FACT
FACT
FACT
FACT
FACT
FACT
FACT
FACT
FACT
FACT
FACT

JAM memory example

robot_status "Ok";
partner_status ''Ok";

robot _initialized "False';
robot localized "False';
robot registered "False™;

robot position 10000 10000 O;

robot location "Unknown™;
selt "CARMEL";

partner "BORIS'";

object found "False';
object delivered "False';
communication_status "Ok';
plan_empty "False";
destination ""Room4'';

next _room ""Room3";

next _node '*Nodel2";

[Huber, 1999]

Plan: {
NAME :
"Example plan"
DOCUMENTATION:
"This 1s a nonsensical plan that shows all of the possible actions™
GOAL:
ACHIEVE plan_example $distance;
PRECONDITION: (< $distance 50);
CONTEXT:
RETRIEVE task _complete $STATUS;

50Dy - (== $STATUS “False™); JAM pla n

QUERY determine_task $task;
FACT problem_solved $task $solved;

R example

{
TEST (== $solved "YES™);

WAIT user_notified;
RETRACT working on_problem "True';

TEST (== $solved "NO™);
ACHIEVE problem_decomposed; Uﬁuber,l999]

ASSIGN S$result (* 3 5);
}:
UPDATE (task complete) (task complete "True');
FAILURE:
UPDATE (plan_example_ failed) (plan_example_failed "True™);
EXECUTE print "Example failed. Bailing out”
ATTRIBUTES: "test 1 cpu-use 3.0";
EFFECTS:
UPDATE (task complete) (task _complete “True™);
A

// in case | am in a dirty location
+dirty: true <- suck.

Jason plan
// 1in case | am in a clean location
+clean: pos(l) <- right.
+clean: pos(r) <- left. example

What is actually the most iInteresting iIs “contextual plan invocation”.

=> |nteresting “node type”

FIXED STRUCTURING CONTEXTUAL STRUCTURING CONTEXTUAL STRUCTURING INTERPRETATION

Fight Foolishly

e @—:» .:EFIGHT FIGHT —>[Fight Foolishly } I FIGHT
E 0 Feeling strong Feeling strong

-
@
o
=1
Q
®
=
o]
=1
Q

=3

Fight Cowardly

0 Feeling weak
Fight Standard

Fight Cowardly

Feeling weak

Fight Standard

FIGHT . Fight Standard
=)

GOAL — Blocks world

|| File Edit Source Mavigate Search Project Run Window Help
S AENENS R R)y RAD RS SR SRR SR e A | B | & Java [@GOAL) & GOAL Debug
[% Script Explorer 22 = O @ stackBuilder.goal 52 = 0
= | = <ED = % This agent mowves blocks in order to achieve a target configuration of blocks (the goal inm its goal base). =
4 @ BlocksWorld % Initialize the agent and it's mental state. I
[£ blocksworld = init module { |
1 4@ blocksworld.mas2g = knowledge {
IS Q bw2agents.mas2g % only blocks can be on top of another object.
i+ 4@ stackBuilder.geal block(x) e on(Xx, —?‘ . . .
% a block is clear if nothing is on top of it.
> @ tableAgent.goal clear(x) :- block(X), not(on(_, X)).
> @ BWATZ % the table is always clear.
clear(table). A
¥ a tower is any non-empty stack of blocks that sits on the table. 3
tower([X]) :- on(X, table).
tower([X, Y| T1) :- on(X, ¥), tower{[Y| TI).
= goals {
= % a single goal to achieve a particular configuration of blocks.
% assumes that these blocks are available in the Blocks World.
on(bl,b5), on(b2,table), on(b3,table), on(b4,b3), on(b5,b2), on(b6,b4), on(b7,table).
= actionspec {
% moves a block on top of another bleck or to the table. |
= move(X, ¥) {
= % a block can only be moved elsewhere if that block and the place to move it to are both clear.
% on(X, Z) retrieves the current (and soon to be old) position where block X sits on.
% not{ on(X,Y)) prevents an agent from moving a block on the table to ancther place on the table.
#% because a block cannot be put on top of itself not(X=¥) is included in the precendition.
pre { clear(X), clear(Y), on(X, Z), not(on(X, Y¥)), not(X=¥) }
= ¥ effect of moving block X on top of ¥ is that we have on(X, Y).
% after moving, block X is no longer on top of Z and we remove on(X, I).
past { not(on(X, Z)), on(X, ¥) }
}
}
} -
4 k
8= Outline 23 = B8
a - Problems B Console &3 = B~~~ = 8
4 4 initmoduled £ N Neo consoles to display at this time,
4 4’ knowledge() D
@ block
@ x
@ on
G x 2

GOAL — Blocks world

event module{
programf
forall bel (percept({on(X,¥)), on(¥,Z), not(¥=Z)) do insert{on(X,¥), not(on(X,Z))}.
}
}

main module{
programf
if a-goal (tower{[X,YIT]}), bel (tower{[¥YIT])) then move (X,¥).
if a-goal (tower{[XIT])) then move (¥, table).
H
H

7 - Human-like artificial agents

16

End.

7 - Human-like artificial agents

17

References

M. Wooldridge: An Introduction to MultiAgent Systems. John Wiley &
Sons (1995)

Gerhard Weiss (ed.): Multiagent Systems. Ch. 8 (by Singh et al.), MIT
Press (1999)

Huber, M. J.: JAM: A BDI-theoretic mobile agent architecture. In:
Proceedings of the 3rd International Conference on Autonomous Agents
(Agents'99). Seatle (1999) 236-243

Bratman, M. E.: Intention, Plans and Practical Reason. Harvard
University Press, Cambridge, Ma (1987)

Jack homepage: http://www.agent-
software.com/shared/home/index.html

IVE homepage: http://urtax.ms.mff.cuni.cz/ive/public/about.php

Sing M. P, Rao A. S., Georgeff M. P: BDI Implementations, chapter 8.4.
In: Multiagent systems (Wies, G. — eds.) 1999

	Slide Number 1
	Outline
	Practical reasoning
	Beliefs
	Intentions and desires
	Abstract interpreter
	Abstract interpreter
	BDI Interpreter – notes
	BDI Interpreter - notes
	Jason / JAM intentional stack
	JAM memory example
	JAM plan example
	Jason plan example
	=> Interesting “node type”
	GOAL – Blocks world
	GOAL – Blocks world
	End.
	References

