
UT2004 bots made easy!

Lecture 6 – A* + Visibility

Faculty of mathematics and physics
Charles University in Prague
5th April 2016

 Copy UT2004 into D:\

 Start downloading the bot:
 http://alturl.com/45x9m

 http://diana.ms.mff.cuni.cz/pogamut_files/lectures/2014-2015/L6-HideAndSeekBot.zip

http://alturl.com/45x9m
http://diana.ms.mff.cuni.cz/pogamut_files/lectures/2014-2015/L6-HideAndSeekBot.zip

 Fill the short test for this lessons
 7 minutes
 https://goo.gl/kgs0ly
 O vs 0, i vs. l vs. 1

 https://docs.google.com/forms/d/1djQW1MCz2dCX3rMzl6

OvsBnz-Kq1UAyv_mpiwqG7dbA/viewform

https://goo.gl/kgs0ly
https://docs.google.com/forms/d/1GYjpPLj0PaA508jq_H8SPhHqnoguLgaJrhEL8CdACnw/viewform
https://docs.google.com/forms/d/1djQW1MCz2dCX3rMzl6OvsBnz-Kq1UAyv_mpiwqG7dbA/viewform
https://docs.google.com/forms/d/1djQW1MCz2dCX3rMzl6OvsBnz-Kq1UAyv_mpiwqG7dbA/viewform

1. Big Picture
2. Visibility abstraction
 Visibility matrix
 Visibility
 this.visibility

3. How to reason about path
 A* and custom map view
 UT2004AStar, IPFMapView<NavPoint>
 this.aStar

4. Hide&Seek Game
 Rules, Map
 HideAndSeekMap

5. Hide&Seek Tournament Announcement

1. Big Picture
2. Visibility abstraction
 Visibility matrix
 Visibility
 this.visibility

3. How to reason about path
 A* and custom map view
 UT2004AStar, IPFMapView<NavPoint>
 this.aStar

4. Hide&Seek Game
 Rules, Map
 HideAndSeekMap

5. Hide&Seek Tournament Announcement

 Visibility class
 Contains precomputed visibility matrix between

path points and some points on links

 Matrices for competition maps already
present

kEE ..1

iE

k

i
VS

1=
∨¬=

 How to find the cover?
 Enemies …

 Safe waypoints …

1. Choose target T
2. Others are

enemies Ei

2. Navpoints target T
is visible from

TV

3. Navpoints
other enemies Ei
can see

iE

k

i
V

1=
∨

4. Smart place to
shoot from

iE

k

it VV
1=
∨¬∧

 Visibility class (this.visibility)
getNearestVisibilityLocationTo(ILocated)
getCoverPointsFrom(ILocated)
getCoverPointsFromN(ILocated…)
getMatrix()
isVisible(ILocated, ILocated)

 VisibilityMatrix class
 getMatrix()
 getNearestIndex(ILocated located)

 To be able to use the visibility matrix, you need to
have a file with the visibility information

 Each map has its own file. E.g.

VisibilityMatrix-DM-TrainingDay-all.bin

 Place this file in the root of the project folder of your
bot

 Get all matrices from svn

svn://artemis.ms.mff.cuni.cz/pogamut/trunk/project/

Main/PogamutUT2004Examples/19-
VisibilityBatchCreator/visibility-matrices

1. Big Picture
2. Visibility abstraction
 Visibility matrix
 Visibility
 this.visibility

3. How to reason about path
 A* and custom map view
 UT2004AStar, IPFMapView<NavPoint>
 this.aStar

4. Hide&Seek Game
 Rules, Map
 HideAndSeekMap

5. Hide&Seek Tournament Announcement

 Agent deliberation cycle
1. Update senses
▪ Some Players have become visible

2. Update percepts
▪ They are all enemies!

3. Reason
▪ Where can I take cover? How can I fallback?
=> Infer new information given the senses / percepts

4. Decide
▪ Inform my team then … should I take cover, fallback or attack?

5. Take action

 Remembering Dijkstra’s alg?

 Roughly speaking…

 Nodes = {start}
 while (!nodes.empty) {
 Node = pick_shortest_path(nodes)
 if (Node == Target)
 return reconstruct_path(Node)
 Nodes = Nodes \ Node
 expand(Node, Nodes)
 }

15

 A* trick

 Roughly speaking…

 Nodes = {start}
 while (!nodes.empty) {
 Node = pick_the_most_promising(nodes)
 if (Node == Target) return

 reconstruct_path(Node)
 Nodes = Nodes \ Node
 expand(Node, Nodes)
 }

19

20

21

22

 A* heuristic function must be… ?
1. Admissible for correctness
▪ Do not over-estimate the path-cost

2. Consistent == Monotone (for efficiency)
▪ “triangle inequation”

 Blah! Let’s hack it!
 What if we impose additional COST to some nodes

or links?

 Let’s choose some “nodes” or “links” that we want to avoid
 B … BADDIES … nodes or links with extra cost
 EC(B) … EXTRA COST … sum of extra cost over the B set

 We then have two types of metrics for the path
 Len(p) … PATH LENGTH … real environment path length
 Cost(p) … PATH COST … Len(p) + EC(p)

 Thus we can run A* using those two metrics
 A*-Len(N,M) … outputs the shortest path between nodes N and M
 A*-Cost(N,M) … outputs the least costly path between nodes N and M

 What do A*-Len(N,M) and A*-Cost(N,M) look like?

 Let’s choose some “nodes” or “links” that we want to avoid
 B … BADDIES … nodes or links with extra cost
 EC(B) … EXTRA COST … sum of extra cost over the B set

 We then have two types of metrics for the path
 Len(p) … PATH LENGTH … real environment path length
 Cost(p) … PATH COST … Len(p) + EC(p)

 Thus we can run A* using those two metrics
 A*-Len(N,M) … outputs the shortest path between nodes N and M
 A*-Cost(N,M) … outputs the least costly path between nodes N and M

 What do A*-Len(N,M) and A*-Cost(N,M) look like?

1. A*-Len(N,M) != A*-Cost(N,M)
 A*-Len(N,M) path contains some B’ that are not on the path of A*-Cost(N,M)

⇒ We have found a detour that is shorter than EC(B’) !
 Cost(A*-Cost(N,M)) < Len(A*-Len(N,M)) + EC(A*-Len(N,M))

 Let’s choose some “nodes” or “links” that we want to avoid
 B … BADDIES … nodes or links with extra cost
 EC(B) … EXTRA COST … sum of extra cost over the B set

 We then have two types of metrics for the path
 Len(p) … PATH LENGTH … real environment path length
 Cost(p) … PATH COST … Len(p) + EC(p)

 Thus we can run A* using those two metrics
 A*-Len(N,M) … outputs the shortest path between nodes N and M
 A*-Cost(N,M) … outputs the least costly path between nodes N and M

 What do A*-Len(N,M) and A*-Cost(N,M) look like?

2. A*-Len(N,M) == A*-Cost(N,M)
 Both paths contains B’ subset of B

⇒ There is no other PATH(N,M), for which following would hold:
 Cost(PATH(N,M)) < Len(A*-Len(N,M)) + EC(A*-Len(N,M))
 Len(PATH(N,M)) + EC(PATH(N,M)) < Len(A*-Len(N,M)) + EC(B’)

⇒ All other paths that would go around B’ are longer than EC(B’) !

 Example map

27

 Start-node

28

 Target-node

29

 Shortest path

30

 Adversary we want to avoid

31

 Let’s rise the NODE cost … is it enough?

32

 No…

33

 Rise the NODE cost again… enough now?

34

 Here you go!
 Why was this path found?

35

 Adding important heuristic costs
 So, are we cheating or not?

36

 Combine it with enemy position!
 extra cost = 500 / distance-to-enemy

 Combine it with Visibility class!
 boolean visibility.isVisible(ILocated, ILocated)

 Combine both enemy position and the visibility!

 Combine with already-found path + fwMap and
find different paths!

 Play with the cost iteratively
 Different path not found? Ok, just rise the cost…
 Does different path even exist?

 => Try to “forbid” some node/link completely

 UT2004AStar
 this.aStar.findPath(from, to, IPFMapView);

 Implement your own custom IPFMapView:

new IPFMapView<NavPoint>() {

 public int getNodeExtraCost(NavPoint node, int mapCost) {}

 public int getArcExtraCost(NavPoint nodeFrom, NavPoint nodeTo, int mapCost) {}

 public Collection<NavPoint> getExtraNeighbors(NavPoint node,

 Collection<NavPoint> mapNeighbors) {}

 public boolean isNodeOpened(NavPoint node) {}

 public boolean isArcOpened(NavPoint nodeFrom, NavPoint nodeTo) {}
}

1. Big Picture
2. Visibility abstraction
 Visibility matrix
 Visibility
 this.visibility

3. How to reason about path
 A* and custom map view
 UT2004AStar, IPFMapView<NavPoint>
 this.aStar

4. Hide&Seek Game
 Rules, Map
 HideAndSeekMap

5. Hide&Seek Tournament Announcement

 Custom “game-mode” for UT2004
 Two roles:

1. Seeker (having “it”)
2. Runner

 Seeker has to find runners and then get home (safe
point) first to “capture them”

 Runners have to make it home (to safe point)
before Seeker

 this.hide agent module
 Custom map: DM-HideAndSeekMap

 One match = 4 games of 10 rounds each of hide and
seek with fixed seeker for each game
 1 round = 90 seconds (first 8 seconds hide time, next 5

seconds restricted safe area time)
 Spotting
 Seeker “spots” runner when he sees him for at least 600

ms (cca “two logic() ticks”)
 Seeker is spawned into the map after first 8 seconds

 Safe area
 Runners are not allowed to dwell around safe point for

certain amount of time at the beginning of the game (5
seconds)

 Scoring RUNNER
 Runner captured by seeker -10
 Runner fouled (went into safe area before timeout) -1000
 Runner made it to safe area before seeker 150
 Runner survived round (haven’t been captured by seeker) 50

 Scoring SEEKER
 Seeker captured runner (spotted + made it to s. a. first) 250
 Runner spotted 50
 Runner escaped (made it to safe area before seeker) -20
 Runner survived (neither of them made it to safe area) -10
 Seeker fouled (dwelled in restricted area > 7 secs) -100

 DM-HideAndSeekMap

1. Big Picture
2. Visibility abstraction
 Visibility matrix
 Visibility
 this.visibility

3. How to reason about path
 A* and custom map view
 UT2004AStar, IPFMapView<NavPoint>
 this.aStar

4. Hide&Seek Game
 Rules, Map
 HideAndSeekMap

5. Hide&Seek Tournament Announcement

 4 bots
 1 Seeker, 3 Runners

 Random groups, Fixed map
 Fixed Seeker - 4 matches per group
 Only bots submitted until Sunday 10.4.2016,

8:00 will participate
 No shooting allowed, no bot speed

reconfigurations allowed, no manual
respawns allowed

 Create Hide&Seek Bot
 Implement both Seeker and Runner
 Tournament will be played on a different map,

so we do not recommend using “static”
information e.g. run to [1000,200,100] 

 To run the hide and seek match launch
HideAndSeekGame class!

 For the tournament name the bot with your
name in getInitializeCommand() method

Via e-mail:
 Subject

 “Pogamut homework 2016 – Assignment X”
 Replace ‘X’ with the assignment number and the subject has to be without

quotes of course
 …or face -2 score penalization

 To
 jakub.gemrot@gmail.com

 Jakub Gemrot (Tuesday practice lessons)

 Attachment
 Completely zip-up your project(s) folder except ‘target’ directory and IDE

specific files (or face -2 score penalization)

 Body
 Please send us information about how much time it took you to finish the

assignment + any comments regarding your implementation struggle
 Information won’t be abused/made public
 In fact it helps to make the practice lessons better

 Don’t forget to mention your full name!

mailto:jakub.gemrot@gmail.com

  In case of doubts about the assignment,
tournament or hard problems, bugs don’t
hesitate to contact us!

 Jakub Gemrot (Tuesday labs)
 jakub.gemrot@gmail.com

mailto:jakub.gemrot@gmail.com
mailto:jakub.gemrot@gmail.com

	Pogamut 3
	Bussiness as usual
	Warm Up!
	Today’s menu
	Big Picture�Already covered
	Big Picture�Today
	Today’s menu
	Visibility Abstraction�Visibility Matrix
	Visibility Matrix�How to get to cover?
	Visibility Matrix�Smart attack
	Visibility Matrix�Interesting methods
	Visibility Matrix�Visibility matrix file
	Today’s menu
	A* Algorithm�Reasoning
	A* Algorithm�Dijkstra
	A* Algorithm�Dijkstra Example I
	A* Algorithm�Dijkstra Example II
	A* Algorithm�Dijkstra Example III
	A* Algorithm�Basics
	A* Algorithm�A* Example I
	A* Algorithm�A* Example II
	A* Algorithm�A* Example III
	A* Algorithm�Basics
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Map cost tricks
	A* Algorithm�Pogamut 3 Classes
	Today’s menu
	Hide&Seek Game�Children play
	Hide&Seek Game�Rules specifics
	Hide&Seek Game�Task point rewards
	Hide&Seek Game�Custom map
	Today’s menu
	Hide&Seek Tournament�Chance to score extra points!
	Assignment 6�Hide&Seek Bot
	Send us finished assignment
	Questions?�I sense a soul in search of answers…

