
UT2004 bots made easy!

Lecture 6 – A* + Visibility

Faculty of mathematics and physics
Charles University in Prague
5th April 2016

 Copy UT2004 into D:\

 Start downloading the bot:
 http://alturl.com/45x9m

 http://diana.ms.mff.cuni.cz/pogamut_files/lectures/2014-2015/L6-HideAndSeekBot.zip

http://alturl.com/45x9m
http://diana.ms.mff.cuni.cz/pogamut_files/lectures/2014-2015/L6-HideAndSeekBot.zip

 Fill the short test for this lessons
 7 minutes
 https://goo.gl/kgs0ly
 O vs 0, i vs. l vs. 1

 https://docs.google.com/forms/d/1djQW1MCz2dCX3rMzl6

OvsBnz-Kq1UAyv_mpiwqG7dbA/viewform

https://goo.gl/kgs0ly
https://docs.google.com/forms/d/1GYjpPLj0PaA508jq_H8SPhHqnoguLgaJrhEL8CdACnw/viewform
https://docs.google.com/forms/d/1djQW1MCz2dCX3rMzl6OvsBnz-Kq1UAyv_mpiwqG7dbA/viewform
https://docs.google.com/forms/d/1djQW1MCz2dCX3rMzl6OvsBnz-Kq1UAyv_mpiwqG7dbA/viewform

1. Big Picture
2. Visibility abstraction
 Visibility matrix
 Visibility
 this.visibility

3. How to reason about path
 A* and custom map view
 UT2004AStar, IPFMapView<NavPoint>
 this.aStar

4. Hide&Seek Game
 Rules, Map
 HideAndSeekMap

5. Hide&Seek Tournament Announcement

1. Big Picture
2. Visibility abstraction
 Visibility matrix
 Visibility
 this.visibility

3. How to reason about path
 A* and custom map view
 UT2004AStar, IPFMapView<NavPoint>
 this.aStar

4. Hide&Seek Game
 Rules, Map
 HideAndSeekMap

5. Hide&Seek Tournament Announcement

 Visibility class
 Contains precomputed visibility matrix between

path points and some points on links

 Matrices for competition maps already
present

kEE ..1

iE

k

i
VS

1=
∨¬=

 How to find the cover?
 Enemies …

 Safe waypoints …

1. Choose target T
2. Others are

enemies Ei

2. Navpoints target T
is visible from

TV

3. Navpoints
other enemies Ei
can see

iE

k

i
V

1=
∨

4. Smart place to
shoot from

iE

k

it VV
1=
∨¬∧

 Visibility class (this.visibility)
getNearestVisibilityLocationTo(ILocated)
getCoverPointsFrom(ILocated)
getCoverPointsFromN(ILocated…)
getMatrix()
isVisible(ILocated, ILocated)

 VisibilityMatrix class
 getMatrix()
 getNearestIndex(ILocated located)

 To be able to use the visibility matrix, you need to
have a file with the visibility information

 Each map has its own file. E.g.

VisibilityMatrix-DM-TrainingDay-all.bin

 Place this file in the root of the project folder of your
bot

 Get all matrices from svn

svn://artemis.ms.mff.cuni.cz/pogamut/trunk/project/

Main/PogamutUT2004Examples/19-
VisibilityBatchCreator/visibility-matrices

1. Big Picture
2. Visibility abstraction
 Visibility matrix
 Visibility
 this.visibility

3. How to reason about path
 A* and custom map view
 UT2004AStar, IPFMapView<NavPoint>
 this.aStar

4. Hide&Seek Game
 Rules, Map
 HideAndSeekMap

5. Hide&Seek Tournament Announcement

 Agent deliberation cycle
1. Update senses
▪ Some Players have become visible

2. Update percepts
▪ They are all enemies!

3. Reason
▪ Where can I take cover? How can I fallback?
=> Infer new information given the senses / percepts

4. Decide
▪ Inform my team then … should I take cover, fallback or attack?

5. Take action

 Remembering Dijkstra’s alg?

 Roughly speaking…

 Nodes = {start}
 while (!nodes.empty) {
 Node = pick_shortest_path(nodes)
 if (Node == Target)
 return reconstruct_path(Node)
 Nodes = Nodes \ Node
 expand(Node, Nodes)
 }

15

 A* trick

 Roughly speaking…

 Nodes = {start}
 while (!nodes.empty) {
 Node = pick_the_most_promising(nodes)
 if (Node == Target) return

 reconstruct_path(Node)
 Nodes = Nodes \ Node
 expand(Node, Nodes)
 }

19

20

21

22

 A* heuristic function must be… ?
1. Admissible for correctness
▪ Do not over-estimate the path-cost

2. Consistent == Monotone (for efficiency)
▪ “triangle inequation”

 Blah! Let’s hack it!
 What if we impose additional COST to some nodes

or links?

 Let’s choose some “nodes” or “links” that we want to avoid
 B … BADDIES … nodes or links with extra cost
 EC(B) … EXTRA COST … sum of extra cost over the B set

 We then have two types of metrics for the path
 Len(p) … PATH LENGTH … real environment path length
 Cost(p) … PATH COST … Len(p) + EC(p)

 Thus we can run A* using those two metrics
 A*-Len(N,M) … outputs the shortest path between nodes N and M
 A*-Cost(N,M) … outputs the least costly path between nodes N and M

 What do A*-Len(N,M) and A*-Cost(N,M) look like?

 Let’s choose some “nodes” or “links” that we want to avoid
 B … BADDIES … nodes or links with extra cost
 EC(B) … EXTRA COST … sum of extra cost over the B set

 We then have two types of metrics for the path
 Len(p) … PATH LENGTH … real environment path length
 Cost(p) … PATH COST … Len(p) + EC(p)

 Thus we can run A* using those two metrics
 A*-Len(N,M) … outputs the shortest path between nodes N and M
 A*-Cost(N,M) … outputs the least costly path between nodes N and M

 What do A*-Len(N,M) and A*-Cost(N,M) look like?

1. A*-Len(N,M) != A*-Cost(N,M)
 A*-Len(N,M) path contains some B’ that are not on the path of A*-Cost(N,M)

⇒ We have found a detour that is shorter than EC(B’) !
 Cost(A*-Cost(N,M)) < Len(A*-Len(N,M)) + EC(A*-Len(N,M))

 Let’s choose some “nodes” or “links” that we want to avoid
 B … BADDIES … nodes or links with extra cost
 EC(B) … EXTRA COST … sum of extra cost over the B set

 We then have two types of metrics for the path
 Len(p) … PATH LENGTH … real environment path length
 Cost(p) … PATH COST … Len(p) + EC(p)

 Thus we can run A* using those two metrics
 A*-Len(N,M) … outputs the shortest path between nodes N and M
 A*-Cost(N,M) … outputs the least costly path between nodes N and M

 What do A*-Len(N,M) and A*-Cost(N,M) look like?

2. A*-Len(N,M) == A*-Cost(N,M)
 Both paths contains B’ subset of B

⇒ There is no other PATH(N,M), for which following would hold:
 Cost(PATH(N,M)) < Len(A*-Len(N,M)) + EC(A*-Len(N,M))
 Len(PATH(N,M)) + EC(PATH(N,M)) < Len(A*-Len(N,M)) + EC(B’)

⇒ All other paths that would go around B’ are longer than EC(B’) !

 Example map

27

 Start-node

28

 Target-node

29

 Shortest path

30

 Adversary we want to avoid

31

 Let’s rise the NODE cost … is it enough?

32

 No…

33

 Rise the NODE cost again… enough now?

34

 Here you go!
 Why was this path found?

35

 Adding important heuristic costs
 So, are we cheating or not?

36

 Combine it with enemy position!
 extra cost = 500 / distance-to-enemy

 Combine it with Visibility class!
 boolean visibility.isVisible(ILocated, ILocated)

 Combine both enemy position and the visibility!

 Combine with already-found path + fwMap and
find different paths!

 Play with the cost iteratively
 Different path not found? Ok, just rise the cost…
 Does different path even exist?

 => Try to “forbid” some node/link completely

 UT2004AStar
 this.aStar.findPath(from, to, IPFMapView);

 Implement your own custom IPFMapView:

new IPFMapView<NavPoint>() {

 public int getNodeExtraCost(NavPoint node, int mapCost) {}

 public int getArcExtraCost(NavPoint nodeFrom, NavPoint nodeTo, int mapCost) {}

 public Collection<NavPoint> getExtraNeighbors(NavPoint node,

 Collection<NavPoint> mapNeighbors) {}

 public boolean isNodeOpened(NavPoint node) {}

 public boolean isArcOpened(NavPoint nodeFrom, NavPoint nodeTo) {}
}

1. Big Picture
2. Visibility abstraction
 Visibility matrix
 Visibility
 this.visibility

3. How to reason about path
 A* and custom map view
 UT2004AStar, IPFMapView<NavPoint>
 this.aStar

4. Hide&Seek Game
 Rules, Map
 HideAndSeekMap

5. Hide&Seek Tournament Announcement

 Custom “game-mode” for UT2004
 Two roles:

1. Seeker (having “it”)
2. Runner

 Seeker has to find runners and then get home (safe
point) first to “capture them”

 Runners have to make it home (to safe point)
before Seeker

 this.hide agent module
 Custom map: DM-HideAndSeekMap

 One match = 4 games of 10 rounds each of hide and
seek with fixed seeker for each game
 1 round = 90 seconds (first 8 seconds hide time, next 5

seconds restricted safe area time)
 Spotting
 Seeker “spots” runner when he sees him for at least 600

ms (cca “two logic() ticks”)
 Seeker is spawned into the map after first 8 seconds

 Safe area
 Runners are not allowed to dwell around safe point for

certain amount of time at the beginning of the game (5
seconds)

 Scoring RUNNER
 Runner captured by seeker -10
 Runner fouled (went into safe area before timeout) -1000
 Runner made it to safe area before seeker 150
 Runner survived round (haven’t been captured by seeker) 50

 Scoring SEEKER
 Seeker captured runner (spotted + made it to s. a. first) 250
 Runner spotted 50
 Runner escaped (made it to safe area before seeker) -20
 Runner survived (neither of them made it to safe area) -10
 Seeker fouled (dwelled in restricted area > 7 secs) -100

 DM-HideAndSeekMap

1. Big Picture
2. Visibility abstraction
 Visibility matrix
 Visibility
 this.visibility

3. How to reason about path
 A* and custom map view
 UT2004AStar, IPFMapView<NavPoint>
 this.aStar

4. Hide&Seek Game
 Rules, Map
 HideAndSeekMap

5. Hide&Seek Tournament Announcement

 4 bots
 1 Seeker, 3 Runners

 Random groups, Fixed map
 Fixed Seeker - 4 matches per group
 Only bots submitted until Sunday 10.4.2016,

8:00 will participate
 No shooting allowed, no bot speed

reconfigurations allowed, no manual
respawns allowed

 Create Hide&Seek Bot
 Implement both Seeker and Runner
 Tournament will be played on a different map,

so we do not recommend using “static”
information e.g. run to [1000,200,100]

 To run the hide and seek match launch
HideAndSeekGame class!

 For the tournament name the bot with your
name in getInitializeCommand() method

Via e-mail:
 Subject

 “Pogamut homework 2016 – Assignment X”
 Replace ‘X’ with the assignment number and the subject has to be without

quotes of course
 …or face -2 score penalization

 To
 jakub.gemrot@gmail.com

 Jakub Gemrot (Tuesday practice lessons)

 Attachment
 Completely zip-up your project(s) folder except ‘target’ directory and IDE

specific files (or face -2 score penalization)

 Body
 Please send us information about how much time it took you to finish the

assignment + any comments regarding your implementation struggle
 Information won’t be abused/made public
 In fact it helps to make the practice lessons better

 Don’t forget to mention your full name!

mailto:jakub.gemrot@gmail.com

 In case of doubts about the assignment,
tournament or hard problems, bugs don’t
hesitate to contact us!

 Jakub Gemrot (Tuesday labs)
 jakub.gemrot@gmail.com

mailto:jakub.gemrot@gmail.com
mailto:jakub.gemrot@gmail.com

	Pogamut 3
	Bussiness as usual
	Warm Up!
	Today’s menu
	Big Picture�Already covered
	Big Picture�Today
	Today’s menu
	Visibility Abstraction�Visibility Matrix
	Visibility Matrix�How to get to cover?
	Visibility Matrix�Smart attack
	Visibility Matrix�Interesting methods
	Visibility Matrix�Visibility matrix file
	Today’s menu
	A* Algorithm�Reasoning
	A* Algorithm�Dijkstra
	A* Algorithm�Dijkstra Example I
	A* Algorithm�Dijkstra Example II
	A* Algorithm�Dijkstra Example III
	A* Algorithm�Basics
	A* Algorithm�A* Example I
	A* Algorithm�A* Example II
	A* Algorithm�A* Example III
	A* Algorithm�Basics
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Map cost tricks
	A* Algorithm�Pogamut 3 Classes
	Today’s menu
	Hide&Seek Game�Children play
	Hide&Seek Game�Rules specifics
	Hide&Seek Game�Task point rewards
	Hide&Seek Game�Custom map
	Today’s menu
	Hide&Seek Tournament�Chance to score extra points!
	Assignment 6�Hide&Seek Bot
	Send us finished assignment
	Questions?�I sense a soul in search of answers…

