
UT2004 bots made easy!

Lecture 7 – Items and Weapons

Faculty of Mathematics and Physics
Charles University in Prague
12th April 2016

 Fill the short test for this lessons
 7 minutes limit
 https://goo.gl/I1L3zf
 O vs. 0, i vs. l vs. 1

 https://docs.google.com/forms/d/1HTO0XDXOa8i
e1-Lvqs2pmV8-72Bh2bLTHoSx7aUbcIM/viewform

https://goo.gl/I1L3zf
https://docs.google.com/forms/d/1HTO0XDXOa8ie1-Lvqs2pmV8-72Bh2bLTHoSx7aUbcIM/viewform
https://docs.google.com/forms/d/1HTO0XDXOa8ie1-Lvqs2pmV8-72Bh2bLTHoSx7aUbcIM/viewform

1. Big Picture
2. Pogamut World Abstraction
3. Navigation intermezzo
4. Items
5. Weapons & Shooting

1. Big Picture
2. Pogamut World Abstraction
3. Navigation intermezzo
4. Items

Objects (IWorldObject):
 Player
 Item
 NavPoint
 Self
 IncomingProjectile

Events (IWorldEvent):
 HearNoise & HearPickup
 BotDamaged & BotKilled
 PlayerDamaged & PlayerKilled,
 ItemPickedUp
 GlobalChat

 Use modules, listeners and Pogamut helper classes!
 this.players, this.items, this.info …
 MyCollections, DistanceUtils, fwMap

if (this.items. getSpawnedItems().values().size() > 0) { … }

@EventListener(eventClass = ItemPickedUp.class)
public void itemPickedUp(ItemPickedUp event) {
 …
}

#Navpoints in the map = 100 – 5000

 NavPoints
 InventorySpot
 JumpPad
 Lift
 Teleport
 Door
 PlayerStart
 SnipingSpot
 …

 Nav links
 Walk
 Jump
 Lift
 Door
 DoubleJump
 …

1. Big Picture
2. Pogamut World Abstraction
3. Navigation intermezzo
4. Items

General steps:
1. Decide where to go
2. Plan the path (list of navpoints/locations)
3. Follow the path

Story so far:
1. Decide where to go
2. Plan the path (list of navpoints)
3. Follow the path
 Watch for meaningfulness!

4. Check that you have truly grabbed the item!

 @EventListener(eventClass = ItemPickedUp.class)
 public void itemPickedUp(ItemPickedUp event) {
 log.info("I've got an item! " +
 event.getType().getName());
 }

1. Decide where to go (Resoning + Decision
making!)
 items.getSpawnedItems
 (UT2004ItemType)

 perform reasoning
▪ It’s OK to compute paths to all spawned items every

logic()

2. Plan and follow the path
 navigation.navigate(item);

3. Follow the path
 Do you still believe that item your running for is

spawned?
▪ It might have been picked up by your opponent!
 if (!items.isPickupSpawned(item))
 { replan(); }

4. Check that you truly grabbed the item!
 UT2004 navigation is not 100% precise
▪ It might stop running just right before the item!

@EventListener(eventClass = ItemPickedUp.class)
public void itemPickedUp(ItemPickedUp event) {
 if (itemRunning.getId().equals(event.getId()) {
 // I have picked the item!
 }
}

General steps:
1. Decide where to go
2. Plan the path (list of navpoints/locations)
 Navigation mesh “problem”
 Complex path-planning
 PathBuilder

3. Follow the path

What’s the difference between “navpoint path”
and “navmesh path”?

 Navmesh path is truly the shortest
 Navmesh path does not traverse only nav-

links
 Navmesh path likes to do “wall-hugging”

⇒ This means you mill miss moderate number

of items you would have picked otherwise!

What is the real problem with “the shortest path
to the item”?

You do not want that!

You need “a bit longer than shortest not the path

to target item that picks other items along the
way”.

Can you code this idea? …
Difficult…

What is the real problem with “the shortest path
to the item”?

You do not want that!

You need “a bit longer than shortest not the path

to target item that picks other items along the
way”.

What is “a bit longer”?
What are “other items”?

What is the real problem with “the shortest path
to the item”?

You do not want that!

You need “a bit longer than shortest not the path

to target item that picks other items along the
way”.

=> Price / Performance balancing

Solution? (Two approaches)
1. Plan the path in advance
▪ Plan the shortest path
▪ Search for detours
▪ Refine as long as there are “interesting items nearby” and

“detour is not long” (greedy way)
2. Look for opportunities along the way
▪ Plan the shortest path
▪ Start navigating
▪ Look around if you cannot “replan the path”
▪ If you still have a credit for that

Compare these approaches!

1. Big Picture
2. Pogamut World Abstraction
3. Navigation intermezzo
4. Items

 Item (accesible via this.items !)
 More “spawning location” than item
▪ items.isPickupSpawned(item)

 Unique UnrealId => Can be used in Set, Map
 ILocated ~ getLocation() ~ X, Y, Z
 IViewable ~ isVisible()
 Always has corresponding NavPoint instance
▪ NavPoint itemNP = item.getNavPoint()

 Described by UT2004ItemType
▪ item.getType()

UT2004ItemType.FLAK_CANNON
 .SHOCK_RIFLE
 .LIGHTING_GUN

UT2004ItemType.SUPER_HEALTH
 .SUPER_ARMOR
 .SHIELD_PACK
 .SUPER_SHIELD_PACK
 .U_DAMAGE_PACK

 UT2004ItemType, ItemType
 Enum holding concrete type of the item
 Part of some ItemType.Category
▪ Categories are divided based on what items are

intended to do
▪ ItemType.Category.HEALTH
▪ ItemType.Category.ARMOR
▪ ItemType.Category.SHIELD
▪ ItemType.Category.WEAPON
▪ ItemType.Category.AMMO

 Agent module: items
items.getAllItems()
items.getVisibleItems(UT2004ItemType)
items.getSpawnedItems(UT2004ItemType)
items.isPickable(Item)

 DistanceUtils
.getNearest(Collection<Ilocated>)
.getNthNearest(n,Collection<Ilocated>)

 fwMap
.getNearestItem(Collection<Item>)

 Every item is “well” described

Item item =

items.getAll(ItemType.Category.WEAPONS).values()
 .iterator().next();

WeaponDescriptor weaponDesc =
 (WeaponDescriptor)
 descriptors.getDescriptor(item.getType());

if (weaponDesc.getPriDamage() > 50) {
…
}

 Ammo/Armor/HealthDescriptor available as well

 Create CollectorBot
 Collects weapons, ammo and armor on the map
 Run 3 bots on DM-1on1-Albatross
 What if the item you want to pick up is not there?

(e.g. you run two collector bots and the other one
got it first) ~ items.isPickupSpawned(item)
 Re-plan!

 How to check that your bot can pick some item?
 items.isPickable(item)

 How to check the bot successfully picked up an
item?

 How to avoid unreachable items?
 Use TabooSet

 Getting and filtering the items:
 this.items.getSpawnedItems(UT2004ItemType.
Category.WEAPON)

 MyCollections.getFiltered(Collection, new
IFilter<Item>() {…})

 Handling unreachable items:
 Navigation.addStrongNavigationListener(…ST
UCK_EVENT…)

 myTabooSet.add() & myTabooSet.filter(…)
 Some thin items (e.g. HealthVial) are tricky to pick up!

How to be sure that your bot has picked the item up?
 ItemPickedUp.class event

@EventListener(eventClass=ItemPickedUp.class)
public void pickedUp(ItemPickepUp event) {}

 How can I know that the item is pickable?
 When bot’s helath is 100, MEDKIT is not

pickable…
 if (this.items.isPickable(item)) { … }

 items.isPickable() tells you whether you can pick
the item up at all!

Via e-mail:
 Subject

 “Pogamut homework 2016 – Assignment X”
 Replace ‘X’ with the assignment number and the subject has to be without

quotes of course
 …or face -2 score penalization

 To
 jakub.gemrot@gmail.com

 Jakub Gemrot (Tuesday practice lessons)

 Attachment
 Completely zip-up your project(s) folder except ‘target’ directory and IDE

specific files (or face -2 score penalization)

 Body
 Please send us information about how much time it took you to finish the

assignment + any comments regarding your implementation struggle
 Information won’t be abused/made public
 In fact it helps to make the practice lessons better

 Don’t forget to mention your full name!

mailto:jakub.gemrot@gmail.com

  We do not own the patent of perfection (yet…)

 In case of doubts about the assignment,
tournament or hard problems, bugs don’t
hesitate to contact us!

 Jakub Gemrot (Tuesday practice lessons)
 jakub.gemrot@gmail.com

mailto:jakub.gemrot@gmail.com
mailto:jakub.gemrot@gmail.com

	Pogamut 3
	Warm Up!
	Today’s menu
	Big Picture�Already covered
	Big Picture�Today
	Today’s menu
	Pogamut World Abstraction�Items overview
	UT2004 World Abstraction�Navigation graph
	UT2004 World Abstraction�Nav link/NavPoint types
	Today’s menu
	Navigation�Step by step
	Navigation�Step by step
	Navigation�Stages
	Navigation�Stages
	Navigation�Stages
	Navigation�PathBuilder
	Navigation�NavMesh and PathBuilder
	Navigation�NavMesh and PathBuilder
	Navigation�NavMesh and PathBuilder
	Navigation�NavMesh and PathBuilder
	Navigation�NavMesh and PathBuilder
	Today’s menu
	Items�Basics
	Items�Important ItemTypes
	Items�ItemType, UT2004ItemType & Categories
	Items�Items
	Items�ItemDescriptor(s)
	Assignment 7�(or Homework)
	Assignment�Cheatsheet
	Assignment�Cheatsheet
	Send us finished assignment
	Questions?�I sense a soul in search of answers…

