Faculty of Mathematics and Physics
Charles University in Prague
26t April 2016

UT2004 bots made easy!

Pogamut 3

Lecture g —-yaPOSH

Fill the short test for this lessons

8 minutes limit

https://g00.21/SFUqu)

https://docs.google.com/forms/d/auYAWIgulamwSVxnrgK
UgbbprTXvCTUpIR Tlr7LC-Lg/viewform

https://goo.gl/SFUquJ
https://docs.google.com/forms/d/1uYAWlguIamwSVxnrgKU96bprTXvCTUpIR_Tlr7LC-Lg/viewform
https://docs.google.com/forms/d/1uYAWlguIamwSVxnrgKU96bprTXvCTUpIR_Tlr7LC-Lg/viewform

Today’s menu

Big Picture

BOD & POSH

yaPOSH

Simple DMBot in yaPOSH

Big Picture

Already covered

NPC component

/NPC Layer/

Simulation

Low-level reasoning

High-level reasoning

NDUSTRY STATE OF
THE ART

Game Engine

BT, HTN, FSM, STRIPS (FEAR

NPC

BlackBoard, key-value

Hierarchical A*

Memory | State

teerings (Reynolds),
RVO, ORCA

Body | Affects

Synchronous
execution

Locomotion

. |Animation Sel.| Path Following

Animation

High
£
c
=l
§ Data filters for
n human like inpu
° g
S :
c
L2
©
E
o
£
Y \ /4
Low Input <
Environment, body state changes

Data flow

» Qutput

Body actions

Game mechanics, Physics, Animation, Rendering

Big Picture

Today

/NPC Layer/

NPC component

Simulation

Low-level reasoning

NDUSTRY STATE OF
THE ART

High-level reasoning

Game Engine

NPC

BT, HTN, FSM, STRIPS (FEAR

BlackBoard, key-value

Hierarchical A*

Memory | State

teerings (Reynolds),
RVO, ORCA

Body | Affects

Synchronous
execution

Locomotion

. |Animation Sel.| Path Following

Animation

High
£
c
=l
§ Data filters for
n human like inpu
° g
S :
c
L2
©
E
o
£
Y \ /4
Low Input <
Environment, body state changes

Data flow

» Qutput

Body actions

Game mechanics, Physics, Animation, Rendering

Today’s menu

Big Picture

BOD & POSH

yaPOSH

Simple DMBot in yaPOSH

Behavior Oriented Design

Methodology

BOD (Behavior Oriented Design)

A methodology for developing control of
complex intelligent agents

virtual reality characters, humanoid robots or
intelligent environments...

Combines the advantages of Behavior-
Based Al and Object Oriented Design.

Authored by Joanna J. Bryson
http://www.cs.bath.ac.uk/~jjb/web/bod.html

http://www.cs.bath.ac.uk/~jjb/web/bod.html

Behaviot Oriented Design

Intelligence by design

Behavior Oriented Design

by Joanna J. Bryson (UK)
http://www.cs.bath.ac.uk/~jjb/web/bod.html

Specify top-level decision
Name the behaviors that the bot should do

Identify the list of sensors that is required to perform
the behavior

Identify the priorities of behaviors

Identify behavior switching conditions
Recursion on respective behaviors until
primitive actions reached

http://www.cs.bath.ac.uk/~jjb/web/bod.html

Behavior Oriented Design

BOD in human language

State the goal of you agent behavior
E.g. It will be a Deathmatch bot
Brainstorm what it will mean to fulfill the behavior goal
E.g. fight players, gather items
Think about conditions that should be fulfilled for the
respective behaviors
E.g. I'll fight only when | see enemy and have proper weapon
Revise, revise, revise

Oh wait, what if | don’t have the proper weapon, | should add a behavior to
flee from fight and gather some weapon.

Pick one of the specified top level behaviors and apply
recursion from point 1!

When you end up with sufficiently simple and clear defined
sensef/action — NAME IT WELL, implement it and test it!

Behavior Oriented Design

Iterative Development

Recursion == Iterative development
Select a part of the plan to extend next.
Extend the agent with that implementation

Extend the plan, code actions and senses

Test and debug that code (')
Revise the current specification.

Behavior Oriented Design

Revising BOD Specifications

Name the behaviors (functions) logically!

Good method name is better than documentation!
Reduce code redundancy

Use copy paste with caution or not at all!
Avoid Complex Conditions

The shorter condition, the better the understanding
Avoid Too Many If-then rules at one level

One level of decision making usually needs no more

than 5 to 7 if-then rules, they may contain fewer..
When in doubt, favor simplicity.

POSH?

POSH

Parallel-rooted, Ordered Slip-stack Hierarchical planner
To put it simply:

a reactive planner working with FIXED, PRE-SET plans
To put it simpler:

a tool enabling to specify if — then rules with priority in a tree like
structure

Advantage:

Makes you think about the behavior in human terms more than the
code

There are multiple POSH implementations
POSH, pyPOSH, JavaPOSH, yaPOSH, ...
Their language varies a lot

POSH

Control Structures |

General structure of the POSH “tree”
Root is a Drive Collection

Root’s children are Drives

Drive child is either Competences, or Action Pattern or
Action

Competence children are again either Competences, or
Action Pattern or Action

|Il

Almost every node has associated a “triggering/goa
condition

[Bryson, 2001]

POSH

Control Structures Il

Action Pattern
(a;, a,, .., a,) asequence of actions

e.g., "baa" and look at it (sheep)

Competence:
{s;, ... S,} asetof competence steps

steps that can be performed in different orders (i.e., a set of
sequences)

one of the steps can be a goal step
the competence returns a value: DONE if the goal is
accomplished, RUNNING if none of its steps fire

Competence step
<p, I, q, [n]>

a priority, a releaser, an action, a number of retries
the action can also be a competence [action pattern

[Bryson, 2001]

POSH

Control Structures lli

Drive Collection
{ d,, .., d, } disadrive element
the root of the hierarchy
adrive element: <p, 1, a, A, [f]>
p —a priority
r—areleaser
a — a currently active element of the drive element (a sub-element)

A —the top element (i.e., a collection, action pattern, or an action) of the drive
element — slip-stack

f—amaximum frequency at which this drive element is visited
e.g., jump every five seconds
for any cycle of the action selection, only the drive collection itself and at
most one other POSH element will have their releasers examined
One drive element can suspend temporarily another drive element

a competence step cannot interrupt another competence step

When the suspending drive element terminates, the suspended drive
element continues

POSH

Control Structures | - Visualization

COMPETEMNCE @—)CD
EEED - Gori -

S
O T s T S T S
T S

POSH defines Tree-like structure

POSH

Control Structures Il - Visualization

X

Respective DRIVEs and COMPETENCE STEPs has
TRIGGERINIG conditions

COMPETENCEs has GOAL condition

POSH

Control Structures lll - Visualization

DRIVEs may have option FREQUENCY decorator
COMPETENCEs may have TIMEOUT decorator

COMPETENCE STEPs may have RETRY-COUNT
decorator

POSH
Control Structures IV - Parallel + Slip Stack

Each DRIVE has an ACTIVE (TOP) ELEMENT that gets

executed when DRIVE trli:gé;ers
DRIVE stack (and ACTIVE ELEMENT) is RESET if SWITCHING

oCCurs _ _ _
Multiple DRIVEs can run in parallel (if defined as such)

\
def Init_senses(self):
self.add _sense("see-player', self.see player)

def 1nit _acts(self): >> Python
self.add _act("move-player', self.move-player)

def see player(self):

top-level ~
~ : :
checking period / frequenc
(RDC life (goal((fail)% P | / \
(drives

prio: 1 ((hit(trigger(* (hit-object)(is-rotating False))) avoid))
2 (C follow(trigger((see-player))) follow-player))
3 ((wander(trigger((succeed))) wander-around))

)) timeout condition terminate (goal) condition >"Lisp"

(C wander-around (minutes 10) (goal((see-player)))
(elements
((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

> If J then J /

def Init_senses(self):
self.add_sense("see-player', se)

def Init_acts¢self):
self.add act("move-player', self_.move-player »

def self):

(RDC life (goal((Tai

(drive
(C hrg trigger((hit-obje iIs-rotating False))) avoid))
((follow(trigger()) follew-player))
((wander(Ctrigger(eeees)(wander-around)))

))

(Clwander-around {minutes 10) (goal())

(erements
((close-enough(trigger((close-to-playei))) stop-bot))
((move(trigger((see-player))) move-player))

))

Practice Lesson

Outline

Big Picture

BOD & POSH

yaPOSH

Simple DeathMatch Bot in yaPOSH

yaPOSH

Introduction

yaPOSH

yet-another Parallel-rooted, Ordered Slip-stack Hierarchical
planner

To put it simply:
a reactive planner working with FIXED, PRE-SET plans

To put it even simpler:
a tool enabling to specify if — then rules with priority in a tree
like structure

Advantage:

Makes you think about the behavior in human terms more
than the code

yaPOSH

Primitives

Actions and Senses
if (sense) then (action)
Drive Collection (DC)
First level of if-then rules
Competence (C)
Second — Nth level of if-then rules
Action Patterns (AP)

Specifies N actions that will be performed in a
sequence

yaPOSH

Differences from POSH

Actions (and all nodes)

Are DURATIVE
Returns FINISHED, RUNNING, RUNNING_ONCE, FAILED
Drives

No timeout decorator, No slip-stack, No parallelism
Competence

No goal node (just another inner-reusable node)
Competence Step

No retry count decorator

yaPOSH

Plan structure (Java glasses)

DriveCollection / Competence {

1. if (sensel()) then competencel(); return;
2. if (sense2()) then competence2(); return;
3. if (sense3()) then action-patternl(); return;
4. 1T (sense4()) then competence3(); {
1. if (sense5()) then actionl(); return;
2. 1T (sense6()) then competence4(); return;
3. 1F (sense7()) then actionZ(); return;
4. 1T (sense8()) then action-pattern(); return;
N. return;

}

DriveCollection is the root of if-then tree of rules.
Competence is another level of if-then tree of rules.

yaPOSH

Plan structure (Java glasses)

ActionPattern.run() {
while (Yactionl-finished()) { actionl(); }
whille (laction2-finished()) { action2(); }
while (laction3-finished()) { action3(); }

}

ActionPattern is sequence of action.

yaPOSH

Plan structure (Java glasses)

ActionPattern.run() {

iIT (this.step == 1) {
while (lactionl-finished()) { actionl(); }
this.step = 2;

¥

iIT (this.step == 2) {
while (laction2-finished()) { action2(); }
this.step = 3;

}

IT (this.step == 3) {
while (laction3-finished()) {action3();}
this.step = 1; // reset

return ActionResult.FINISHED;
}
}

ActionPattern is tracking the step it executed last and always
continues from that one.

yaPOSH

Plan structure (Java glasses)

ActionPattern.run() {

iIT (this.step == 1) {
while (lactionl-finished()) { actionl(); }
1T (actionl-failed()) { this.step = 1; return ActionResult.FAILED; }
this.step = 2;

}

iIT (this.step == 2) {
while (laction2-finished()) { action2(); }
iIT (action2-failed()) { this.step = 1; return ActionResult.FAILED; }
this.step = 3;

}

iIT (this.step == 3) {
while (laction3-finished()) {action3();}
iIT (action3-failed()) { this.step = 1; return ActionResult.FAILED; }
this.reset();
return ActionResult.FINISHED;

}

Of course, ActionPattern honors FAILED state, which resets it.

yaPOSH

Plan structure (Java glasses)

ActionPattern.run()
iIT (step >= children.size()) {
this.reset();
return FINISHED;

}
Node child = children[step];
switch (child.run(Q)) {
case FINISHED:
++step;
return this.run();
case RUNNING:
return RUNNING;
case RUNNING_ONCE:
++step;
return RUNNING ONCE;
case FAILED:
this.reset();
return FAILED;

b5
}
ActionPattern.reset() {
step = O;

y for (Node child : children) child.reset();

yaPOSH

Senses

Senses

Represent condition (Do | see a player?)
Return basic types

Boolean, Integer, Double, String, ...

Can be queried either as ==, 1=, >, <, <= or >=

duelbot.sense. Health
__» IsReachableltem __» Health<50 = b
$type=HEALTH a0
| Add argument |
RunForltem
$item=HEALTH | Remove argument |
Argument name Value

yaPOSH

Action execution

Actions
Represent an action in the environment

Are expected to return:
FINISHED (an action has been finished successfully),

RUNNING (an IVA action is still being executed within
the environment),

FAILED (an action execution has failed).

Have three methods — init(), running(), done()

Selected RUN RUN RUN TAKE FIGHT FIGHT

action | J J J J
Methods | 1 []] ((
. RUN.done() TAKE.done()
executed EE:TI:P) RUN.run() RUN.run() TAKE.init() FIGHT.init() FIGHT.run()
run(TAKE.run() FIGHT.run()

yaPOSH

Execution semantics

yaPOSH runs within “logic()” method you
know from standard Java bot

NEW INFO

' bot logic()

botlogicBeforePlan() yaPOSH will execute until
, ; it finds an action that
UT 2004 while{ yaPOSH.execute().actionResult |= affect the environment
(RUNNING | RUNMNING _ONCE]) J; . .
; and requires new info
botlogicAfterPlan() From the environment.

Bad plan may stall

the bot!
WAIT FOR UT2004
MNEW INFO

yaPOSH

Plan structure (the real)

{
{C heal
{
{{3top-shoot | {{duelbot.sense.IsShooting))) duelbot.action.StopShooting))
{{run-medkit duelbot.acticn.RunForltem{$item= i
)
)
{ life
{
{ (attack-enemy-plaver | { (duelbot.action.SeePlayer))) duelbot.action.ShootPlaver))
{{default | {{cz.cuni.amis.pogamit.sposh.executor. Succeed))) duelbot.action.BunForltem(§item= i

SeePlayer

ShootPlayer

Succeed

RunForltem
$item=HEALTH

yaPOSH

How to make new Sense?

1 -) D RAG & D RO P ! Competences | Action patterns | Actions | Senses
. Type name of primitive:
Succeed

Refresh | | Delete |

Primitives Found:

RunRandomly A

2.) FI I I te m p I ate Adrenaline(duelbot. sense. Adrenaling)
Q | Ammo{duelbot.sense. Ammoa)

AmmoCurrent{duelbot. sense. AmmoCurrent)
Armor(duelbot. sense. Armar)

Fail{cz. cuni.amis. pogamut. sposh. executor . Fail)
HasAmmo({duelbot. sense. HasAmma)
HasWeapon(duelbot.sense HasWeapon)
Health{duelbot. sense. Health)

Project: ut2004-yaposh-dm-stub Instate(duslbot. sense. InState)
IsCurrentWeapon({duelbot. sense. CurrentWeapon)
Location: Source Packages - IsMavigating(duelbot. sense, IsNavigating)
IsReachableltem{duelbat. sense. IsReachableltem)
IsShooting(duelbot. sense. IsShooting)
SeePlayer(duelbot. action. SeePlayer)

Succeed(cz. cuni. amis.pogamut. sposh, executor . Succeed)

Steps Name and Location wizard (1. from 1)

1. Name and Location Class Mame: | MyMewSense

Package: | -

Created File: | 2014 Pogamut YUTY27-yaPOSH-DuelBotisrc\maintjava‘duelbot\sense MyMNewsSense. java

| Finish | | Cancel
3.) Edit generated Java source file
BPrimitiveInfo(name = , description = i

public clasa SesePlayer extends ParamsSense<AttackBotContext, Boolean» |

yaPOSH

How to make new Action?

1.) DRAG & DROP!

L.

Succeed

. RunRandomly
2.) Fill template ~—

o g5

Steps Name and Location wizard (1. from 1)

1. Name and Location Class Mame: |MyNewAction
Project: ut2004-yaposh-dm-stub
Location: Source Packages -
Package: | -

Created File: 2014 Pogamut YUT\27-yaPO5H-DuelBot\srcmainjavalduelbot\actionMyMewAction. java

| Finish || Cancel

(. .

3.) Edit generated Java source file

@PrimitiveInfo (name= , description= i
public class ShootPlayer extends ParamsAction<AttackBotlontext> |

Competences | Action patterns | Actions | Senses

Type name of primitive:

| Refresh | | Delete

Primitives Found:

AdrenalineCombo({duelbaot. action. AdrenalineComba)
ChangeWeapon({duelbat. action. ChangeWeapon)
Do nothing{cz. cuni.amis. pogamut. sposh. executor, DaMothins
Jump({duelbot.action. Jump)
RunFarltem(duelbot. action. RunFarTtem)
RunRandomly{duelbot. action. RunRandomly)
RunToPlayer({duelbat. action. RunToPlayer)
Say(duelbot.action.Say)
Setstate(duelbot. action. SetState)
ShootPlayer{duelbot. action. ShootPlayer)
StopShooting(duelbot, action, StopShooting)
Turn(duelbot, action. Turn)

yaPOSH

New Action Pattern, New competence?

Are created by drag and dropping from POSH
editor from the tabs at the rlght S|de of IDE

Competences | Action patterns | Actions | Sen
Type name of primitive

| Refresh | | Delete |

I_.. Succeed Primitives Found:
Mew competence (drag and drop)
RunRandomly / (C attack-behavior(elements((need-amme (trigger {{cz.cuni.attackbot, Amme 0 ==))

yaPOSH Context

How to access Pogamut modules?

Every POSH action and sense has Context
(this.ctx) that contains all Pogamut modules.
Context is an editable class that is a part of
your POSH bot sources, e.g.
AttackBotContext

You may use context to store some variables,
e.g. [tem you are going for or Player you are
going to fight

yaPOSH

Parameters

Competences, action patterns, actions and senses can be
parameterized

{ BPrimitiveInfo (name = .
{ go-to-flag description =]
{$target="enemy") public class FlagVisible
{bot.TurnToFlag ($teamname=$target) extends FlagSense<httackBotContext,Boolean>
bot.GoToFlag (Stean—:target) {
) public Boolean query |
) EFaram|) Btring teamname
) A
{ life FlagInfo flag = getFlagInfo(teamname) ;
[return flag.isVisible():
|: 1
(pickup-our-flag
[BPFrimitiveInfo (names = .
f description =)
(bot.FlagS5tate ($teamname="our") rublic class TornToFlag
"dropped™) extends Flaghction<AttackBotContext>» {
(bot.FlagIzVizsible (Steamname="our™))
1) public ActionBesult ruon|
go—to-flag(Starget="our") EParam | } String teamMName
) YA
) FlagInfo flag = getFlagInfo (teamMName) ;
) L. getHqui] tJIﬂTD(flag gEtLDcatlnﬂi]],

STTRTRT T ST

yaPOSH

POSH Editor

Enables drag and drop
Select action or sense you want to add or change from
the editor and drag and drop it at desired place

Double clicking POSH graphical element opens

editor, right clicking opens element menu

Support “Go to source”, breakpoints and debugging

Breakpoints PAUSE the bot AND t ' t
4_+| CurrentWeapon!=t —» HasAmm — _..__.. IsCurrentWeaponk=tru |, HasAmm L -
$weapon=SHOCK $weapon=SHOCK $weapon =SHOCK $weapon=SHOCK
Ls ChangeWeap L= ChangeWeapon
$weapon=SHOCK | $weapon=SHOCK
Add single breakpoint
I - - I -
Res
L Turn ___hum Go
]
I - - I -
n-an run]

yaPOSH

How to run POSH plan debugger

Run the bot in Debug mode (right click the project,

select Debug)
In the Debug toolbar, click the green circle button
to enable POSH plan debugger

THPH G @D

)

[] L]
A window with Debugger appears:
_..__..Isc rrentWeapon!=true . » HasAmm _ = HasWeap
$weapon: =SHOCK $weapon-SHOCK $weapon=SHOCK
L ChangeWeapon
$weapon=SHOCK
Ad
Re
—hr Go
|
~ I - S
an

Practice Lesson

Outline

Big Picture

BOD & POSH

yaPOSH

Simple DMBot in yaPOSH

Assighment g

(or Homework)

Create (Simple) DeathMatchBot in yaPOSH
That arms himself and is able to fight an
opponent
Does not stuck (for long).

Points: 5

Assignment g

Cheatsheet

Access Pogamut modules from POSH actions and senses!
this.ctx.getltems() .getSpawnedltems(UT20041temType.C
ategory.WEAPON)

MyCol lections.getFiltered(Collection, new
IFilter<item>() {.})

Handling unreachable items:
this.ctx.getNavigation() .addStrongNavigationListener
(..STUCK_EVENT..)
myTabooSet.add() & myTabooSet.filter(.)

Specifying weapon preferences:
this.ctx.getWeaponPrefs() .addGeneralPref(UT20041temType.FL

AK_CANNON, true)
-.addGeneralPref(UT2004 1temType .ROCKET LAUNCHER, true);

Send us finished assignment

Via e-mail:
Subject
"Pogamut homework 2016 — Assignment X"
Replace “X” with the assignment number and the subject has to be without
quotes of course
...or face -2 score penalization
To

jakub.gemrot@gmail.com
Jakub Gemrot (Tuesday practice lessons)

Attachment
Completely zip-up your project(s) folder except “target” directory and IDE
specific files (orface -2 score penalization)

Body
Please send us information about how much time it took you to finish the
assignment + any comments regarding your implementation struggle
Information won’t be abused/made public
In fact it helps to make the practice lessons better

Don‘t forget to mention your full name!

mailto:jakub.gemrot@gmail.com

Questions?

| sense a soul in search of answers...

In case of doubts about the assignment,
tournament or hard problems, bugs don't
hesitate to contact us!

Jakub Gemrot (Tuesday practice lessons)
jakub.gemrot@gmail.com

mailto:jakub.gemrot@gmail.com
mailto:jakub.gemrot@gmail.com

	Pogamut 3
	Warm Up!
	Today’s menu
	Big Picture�Already covered
	Big Picture�Today
	Today’s menu
	Behavior Oriented Design�Methodology
	Behaviot Oriented Design�Intelligence by design
	Behavior Oriented Design�BOD in human language
	Behavior Oriented Design�Iterative Development
	Behavior Oriented Design�Revising BOD Specifications
	POSH?
	POSH�Control Structures I
	POSH�Control Structures II
	POSH�Control Structures III
	POSH�Control Structures I - Visualization
	POSH�Control Structures II - Visualization
	POSH�Control Structures III - Visualization
	POSH�Control Structures IV – Parallel + Slip Stack
	PyPOSH
	PyPOSH
	Practice Lesson�Outline
	yaPOSH�Introduction
	yaPOSH�Primitives
	yaPOSH�Differences from POSH
	yaPOSH�Plan structure (Java glasses)
	yaPOSH�Plan structure (Java glasses)
	yaPOSH�Plan structure (Java glasses)
	yaPOSH�Plan structure (Java glasses)
	yaPOSH�Plan structure (Java glasses)
	yaPOSH�Senses
	yaPOSH�Action execution
	yaPOSH�Execution semantics
	yaPOSH�Plan structure (the real)
	yaPOSH�How to make new Sense?
	yaPOSH�How to make new Action?
	yaPOSH�New Action Pattern, New competence?
	yaPOSH Context�How to access Pogamut modules?
	yaPOSH�Parameters
	yaPOSH�POSH Editor
	yaPOSH�How to run POSH plan debugger
	Practice Lesson�Outline
	Assignment 9�(or Homework)
	Assignment 9�Cheatsheet
	Send us finished assignment
	Questions?�I sense a soul in search of answers…

