
UT2004 bots made easy!

Faculty of Mathematics and Physics
Charles University in Prague
15th March 2016

Workshop 3 – Running Around Tag! Tournament

 Start downloading the TagBot project
template (~53MB) in advance … now 

 Start copying C:\VirtualniRealita\UT2004
into D:\UT2004

 We will need to modify UT2004 later during the workshop…

 Fill the short test for this lessons
 7 minutes limit
 https://goo.gl/RgMhSl

 Permanent link
 https://docs.google.com/forms/d/1m4v1IezedvqW

vpfjLh5iHC1X49EmKeeZonBq2UIBy5c/viewform

https://goo.gl/RgMhSl
https://docs.google.com/forms/d/1m4v1IezedvqWvpfjLh5iHC1X49EmKeeZonBq2UIBy5c/viewform
https://docs.google.com/forms/d/1m4v1IezedvqWvpfjLh5iHC1X49EmKeeZonBq2UIBy5c/viewform

private UnrealId followTarget = null;

@EventListener(eventClass = GlobalChat.class)
protected void handleChat(GlobalChat event) {
 if (event.getText().contains("hi"))
 body.getCommunication()
 .sendGlobalTextMessage("Hi");
 if (event.getText().contains(“start follow")) {
 followTarget = event.getId();
 }
 if (event.getText().contains(“stop follow”))
 followTarget = null;
}

public void logic() throws PogamutException {
 if (followTarget != null) {
 Player followPlayer = players
 .getPlayer(followTarget);
 if (info.atLocation(followPlayer.getLocation()) &&
 !followPlayer.isVisible()) {
 move.turnHorizontal(30);
 } else {
 move.moveTo(followPlayer);
 }
 }
}

private Boolean following = false;
private Boolean jumping = false;
private Boolean searching = false;
private Location search_location;
private Location last_location;

@EventListener(eventClass = GlobalChat.class)
protected void handleChat(GlobalChat event) {
 if (event.getText().contains("hi"))
 body.getCommunication()
 .sendGlobalTextMessage("Hey you");
 if (event.getText().contains("follow")) {
 this.following = !this.following;
 this.searching = false;
 }
 if (event.getText().contains("jump"))
 this.jumping = !this.jumping;
}

public void logic() throws PogamutException {
 if (this.following) {
 if (this.players.canSeePlayers()) {
 Player pl =
 this.players.getNearestVisiblePlayer();
 this.search_location = pl.getLocation();
 this.searching = true;
 this.move.moveTo(pl);
 } else {
 if (searching) {
 this.move.moveTo(this.search_location);
 if (this.getInfo()
 .atLocation(this.search_location))
 this.searching = false;
 } else
 this.move.turnHorizontal(30);
 }
 }
 if (this.jumping) act.act(new Jump());
}

<<< We’re going to dive into PogamutUT2004 platform
… technically.

>>> Great, just another proprietary library…

<<< Correct, but:
<<< 1) you have to deal with them everywhere,
<<< 2) platform is created around universal principles,

you will learn what to look for in other game
engines.

>>> Really… [skeptical face]

<<< We can only show you the door, you are the one
who has to go through it… ;-)

1. Big Picture
2. How to see
 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge

 this.move

4. Tag! Game
 Rules, Map

5. Tag! Tournament Announcement

Perception (P)

Memory (S)

Action (A)

1. Part of environment state E is exported to the agent p(E) = P

Environment state (E)

2. Agent performs action-selection: f(P,S) -> AxS

3. Actions are carried out in the environment: a(An,E) -> E

What if we dive deeper?

1. Big Picture
2. How to see
 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge
 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. Tag! Tournament Announcement
6. TagBot Implementation Hints

 IWorldObjects
 Self, Player, Item, NavPoint, …
 this.world.getSingle(Self.class)
 this.world.getAll(Player.class)
 this.world.getAll(Item.class)
 this.world.getAll(NavPoint.class)

 Agent modules
 AgentInfo ~ this.info
 Players ~ this.players
 Items ~ this.items
 NavPoints ~ this.navPoints

 Location, Rotation, Velocity (explained later on)

 IWorldObjects
 Self, Player, Item, NavPoint, …
 All objects have unique UnrealId
▪ Each unique id has single UnrealId instance

 Each unique object has single instance
▪ Agent modules are respecting this, no sneaky clone()s

What does it mean for Collections?
=> can be used in Set<UnrealId>, Set<Player>
=> can be used as key in Map<UnrealId, ?> ,
Map<Player, ?> without performance hit

 IWorldObjects
 Self, Player, Item, NavPoint, …
 All objects have unique UnrealId
▪ Each unique id has single UnrealId instance

 Each unique object has single instance
▪ Agent modules are respecting this, no sneaky clone()s

What does it mean for object updates?
=> once obtained instances are auto-updated
=> there is no history

 IWorldObjects ~ low-level API
 this.world.getSingle(Self.class)

▪ Info about your bot
 this.world.getAll(Player.class)

▪ Returns Map<UnrealId, Player>
▪ All players encountered during the session

 this.world.getAllVisible(Player.class)
▪ Returns Map<UnrealId, Player>
▪ All players currently visible (in bot’s FOV)

 this.world.getAll/Visible(Item.class)
 this.world.getAll/Visible(NavPoint.class)
 …

 Agent modules ~ low-level API façades
 AgentInfo ~ this.info ~ Self
 Players ~ this.players ~ Player(s)
 Items ~ this.items ~ Item(s)
 NavPoints ~ this.navPoints ~ NavPoint(s)

 Advantages:
1. List of methods with JavaDoc

 => Easier to way to explore Pogamut API
2. Comprehensibly named methods

 => Easier to read & understand the code

 Location
 X, Y, Z (world space)
 can be used as “vector”

▪ add(), sub(), scale(), getDistance(), dot(), cross()
▪ rotateXY/XZ/YZ()

 Rotation
 Pitch (XZ), Yaw (XY), Roll (YZ)

 Velocity
 X, Y, Z vector
 Length is speed in UT units (1UT ~ 1cm)

 All objects are immutables
=> Can be used in Set, Map

1. Big Picture
2. How to see
 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge
 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. Tag! Tournament Announcement
6. TagBot Implementation Hints

 CommandMessages
 Move, Jump, Dodge
 this.act.act(new Move()…)

 this.act.act(new Jump()…)
 this.act.act(new Dodge()…)

 Agent module
 AdvancedLocomotion ~ this.move

 CommandMessages ~ low-level API
 Move

▪ You can specify 1 location in advance
▪ You can specify focus (where to look while moving), i.e.,

can be used for strafing
 Jump

▪ Can be used for double-jumps as well
 Dodge

▪ Can be used for quick direct jump to arbitrary location

 Agent modules ~ low-level API façade
 AdvancedLocomotion ~ this.move

 All commands wrapped into methods
▪ move.moveTo(), move.strafeTo(), move.jump(), …

 Some simple algebra wrapped as well
▪ move.dodgeLeft(), move.dodgeRight(), …

1. Big Picture
2. How to see
 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge
 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. Tag! Tournament Announcement
6. TagBot Implementation Hints

 Custom “game-mode” for UT2004
 Two roles:

1. Seeker (having “it”)
2. Runner or Prey

 Seeker has to chase runners to pass „it“
 After passing “it” the former seeker is immune to

the new seeker
 this.tag agent module
 Custom map: DM-TagMap
 Simple rectangle map, no obstacles
 procedurally decsribed by TagMap static methods

1. Big Picture
2. How to see
 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge
 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. Tag! Tournament Announcement
6. TagBot Implementation Hints

 4 bots
 1 Seeker, 3 Runners (1 of them will be immune…)

 Random groups
 Tournament will be held in two weeks, only bots

submitted before Sunday 27.3.2016, 8:00 will
participate

 No shooting allowed, no bot speed
reconfigurations allowed

 The best 6 bots from Tag! 2015 will participate in
the tournament
 You will have a chance to test your bots against them

in advance

 Download the TagBot project template
 Copy map/DM-TagMap.ut2 into UT2004/Maps

folder
 Alter
UT2004/System/startGamebotsDMServer.bat
replacing DM-TrainingDay with DM-TagMap

 Implement both TagBot roles
 Seeker ~ 5 points
 Runner ~ 5 points

 Implementations having one role only won’t be
accepted (~ 0 points)

 Note that there are two “main” Java files in
the project

 TagBot
 Bot template you have to finish
 DO NOT ALTER ITS main METHOD!

 TagGame
 Class that starts the match between 4 your

bots
 Use this to test your bot

1. Big Picture
2. How to see
 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge
 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. Tag! Tournament Announcement
6. TagBot Implementation Hints

 Your bot should recognize 3 stages of chasing

 Early-stage
 You are really far from your target
⇒ You have to quickly shorten this distance
⇒ Use rough double-dodges

 Mid-stage
 You are trying to corner your target
⇒ Be careful what commands you’re issuing, you probably

want to avoid “straight” running to your target

 Final-stage
 You are near your target
⇒ You must take chances by doing final dodge-tag
⇒ You might want to distinguish between “corner”, “side

wall” and “open space” situations here

 Be sure not to pursue single target for a long
time …
 If you are unable to get from early->mid

stage for a long time
 If you are unable to get from mid->final

stage for a long time
 If your target manages to escape you and

you switch from final->mid stage again

 Be sure to be aware who got tagged … and
not only by you!
 If someone got tagged, there is a good

chance you can tag him as well
 You can even try to count how much time

it was needed to tag someone to be aware
of the “skill” of your opponents

move.strafeTo(chasingLocation, escapeePlayer)
 You should fix your focus to your prey while chasing
 Can be also used to “look around” during the chase, but

that requires timing and won’t probably work well

move.dodge(chasingDirectionVector, false/true)
 If your prey is near, you can try to quick dodge to it
 This will even work well during early stage of chase to

quickly shorten the distance between you and your prey
 Be careful though as you might actually worsen your

situation during final-stage of tagging as you can “miss
dodge” your target

 False/True switches between Single/Double dodge
modes

 Your bot should try not to get cornered
 Your escape strategies typically distinguishes between 3 kinds of

situations
 Corner

 You are in the corner
⇒ Try quick successive double dodges or double jumps
⇒ Then try to run for open-space position

 Side-wall
 Depending on the position of your chaser you should again
⇒ Try quick successive double dodges or double jumps
⇒ Then try to run for open-space position Open space

 Open-space
 You have a lot of space around you
⇒ You should try to run in circles, but keep an eye on your chaser …

you always have to decide which kind of circle-run you want to
perform (clockwise / counterclockwise) preferably switching
between those two as required by the situation

move.strafeTo(escapeLocation, chaserPlayer)

 Always use strafing and focus on the chaser to
be sure to have up-to-date info about its
position.

 Suitable for circle-runs

move.dodge(escapeDirectionVector, true)

 If in peril, try to perform double-dodge

move.doubleJump()

 … or double jump

 Check the folder TagBot/tournament
 There are batch files to execute tournament

matches
 match-best-2015.bat

 Performs match between the first 4 bots of
the Tag! 2015

 match-123.bat
 Performs match between your bot and 1st,

2nd and 3rd bot of Tag! 2015
 match-456.bat

 Performs match between your bot and 4th,
5th and 6th bot of Tag! 2015

 WARNING! You have to edit batch files first,
to supply correct UT2004_HOME directory

 Alter the line
 set UT2004_HOME=d:\Games\UT2004-Devel

 To match your environment, e.g.
 set UT2004_HOME=c:\UT2004

 To perform match with your bot
 set YOUR_BOT=path-to-your-bot.one-jar.jar

 WARNING! Execution of the batch file might
override you bot/server ports within
UT2004_HOME\System\GameBots2004.ini
 You might bump into “connection refused” exceptions

when trying to run your bot from TagGame of the
template project

 Just restore original values within the
GameBots2004.ini file, and restart a dedicated
server:

 [GameBots2004.BotDeathMatch]
 BotServerPort=3000
 ControlServerPort=3001
 ObservingServerPort=3002

 Check the folder TagBot/tournament-
videos

 There are several videos that might inspire
you for coding Seeker/Runner behaviors

Via e-mail:
 Subject

 “Pogamut homework 2016 – Assignment X”
 Replace ‘X’ with the assignment number and the subject has to be without

quotes of course
 …or face -2 score penalization

 To
 jakub.gemrot@gmail.com

 Jakub Gemrot (Tuesday practice lessons)

 Attachment
 Completely zip-up your project(s) folder except ‘target’ directory and IDE

specific files (or face -2 score penalization)

 Body
 Please send us information about how much time it took you to finish the

assignment + any comments regarding your implementation struggle
 Information won’t be abused/made public
 In fact it helps to make the practice lessons better

 Don’t forget to mention your full name!

mailto:jakub.gemrot@gmail.com

  In case of doubts about the assignment,
tournament or hard problems, bugs don’t
hesitate to contact us!

 Jakub Gemrot (Tuesday labs)
 jakub.gemrot@gmail.com

mailto:jakub.gemrot@gmail.com
mailto:jakub.gemrot@gmail.com

	Pogamut 3
	Assignment 3�Setup
	Warm Up!
	Assignment 2 Revisited�Console/FollowBot
	Assignment 2 Revisited�Console/FollowBot
	Motivation� >>> Why am I sitting here?
	Today’s menu
	Big Picture
	Big Picture
	Big Picture�Today
	Today’s menu
	How to see?�Sensors – Body state, Vision
	How to see?�Sensors – Body state, Vision
	How to see?�Sensors – Body state, Vision
	How to see?�Sensors – Body state, Vision
	How to see?�Sensors – Body state, Vision
	How to see?�Sensors – Body state, Vision
	Today’s menu
	How to move?�Actions
	How to move?�Actions
	How to move?�Actions
	Today’s menu
	Tag! Game�Children play
	Today’s menu
	Tag! Tournament�Chance to score extra points!
	Assignment 3
	Assignment 3
	Today’s menu
	Assignment 3�Cheat sheet – Strategy – Catcher / Chaser
	Assignment 3�Cheat sheet – Strategy – Catcher / Chaser
	Assignment 3�Cheat sheet – Strategy – Catcher / Chaser
	Assignment 3�Cheat sheet – Movement – Catcher / Chaser
	Assignment 3�Cheat sheet – Strategy – Runner / Escapee / Prey
	Assignment 3�Cheat sheet - Movement – Runner / Escapee / Prey
	Assignment 3�Extra Tournament Files
	Assignment 3�Extra Tournament Files
	Assignment 3�Extra Tournament Files
	Assignment 3�Extra Tournament Videos
	Send us finished assignment
	Questions?�I sense a soul in search of answers…

