
University of West Bohemia, Pilsen 23rd February 2015

UT2004 bots made easy!

Intelligent Virtual Agents by Pogamut 3 Contlo introduction

Gentle introduction

- Software agent (by Michael Wooldridge)
 - Embodied intelligent autonomous entity

- Software agent (by Michael Wooldridge)
 - Embodied intelligent autonomous entity
 - Body that is subject to some (physical) laws within its environment

- Software agent (by Michael Wooldridge)
 - Embodied intelligent autonomous entity
 - Operating on an owner's behalf but without any interference of that ownership entity

- Software agent (by Michael Wooldridge)
 - Embodied intelligent autonomous entity
 - Reactive
 - Proactive
 - Thermostat may be an agent too!

- Software agent (by Michael Wooldridge)
 - Embodied intelligent autonomous entity
 - Reactive
 - Proactive
 - Social
 - Okey... 'more' thermostats...

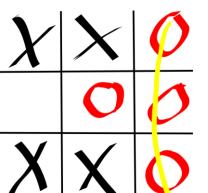
- Software agent (by Michael Wooldridge)
 - Embodied intelligent autonomous entity
 - Reactive
 - Proactive
 - Social
- Intelligent Virtual Agent (IVA)
 - Specific software agent type
 - Wholly and movably embodied within Complex virtual environment / world
 - Acts under bounded rationality

- Software agent (by Michael Wooldridge)
 - Embodied intelligent autonomous entity
 - Reactive
 - Proactive
 - Social
- Intelligent Virtual Agent (IVA)
 - Specific software agent type
 - Wholly and movably embodied within Complex virtual environment (... ?)
 - Acts under bounded rationality

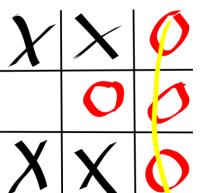
What is Complex V-Environment? How it can be classified?

Env. Classification Properties

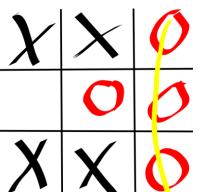
- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy

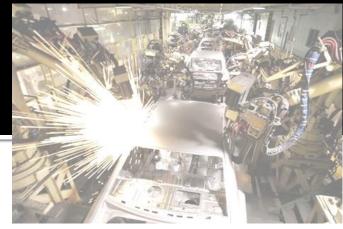


- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy

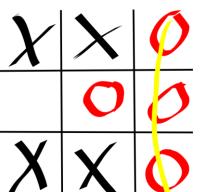


- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy





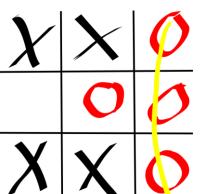
- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy

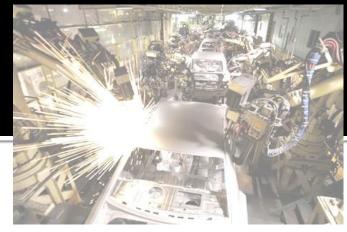


- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy

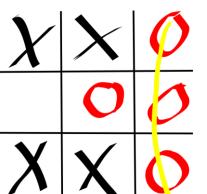


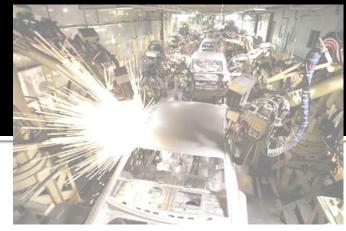
- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy



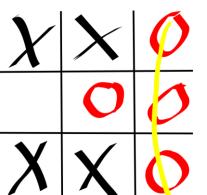


- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy

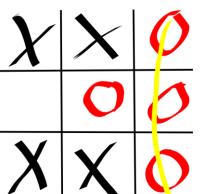




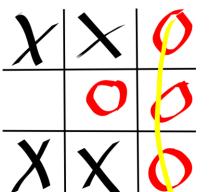
- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy



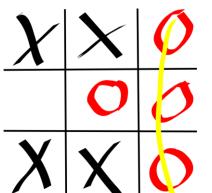
- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy



- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy

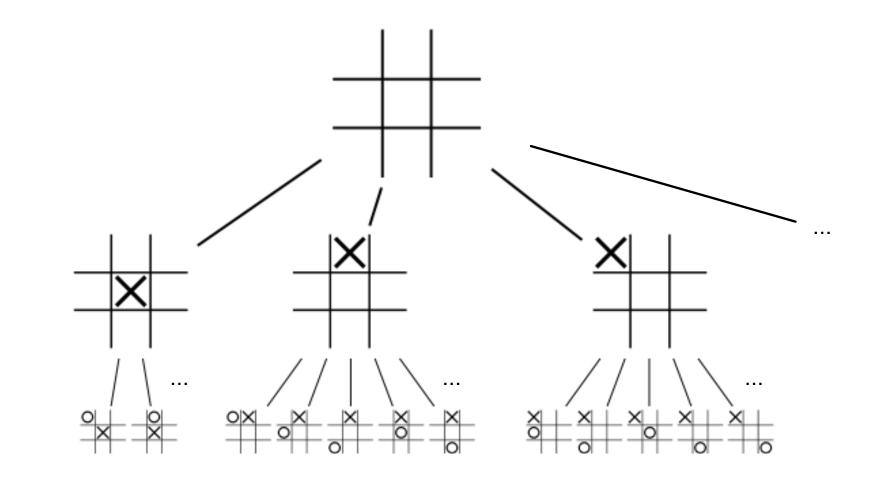


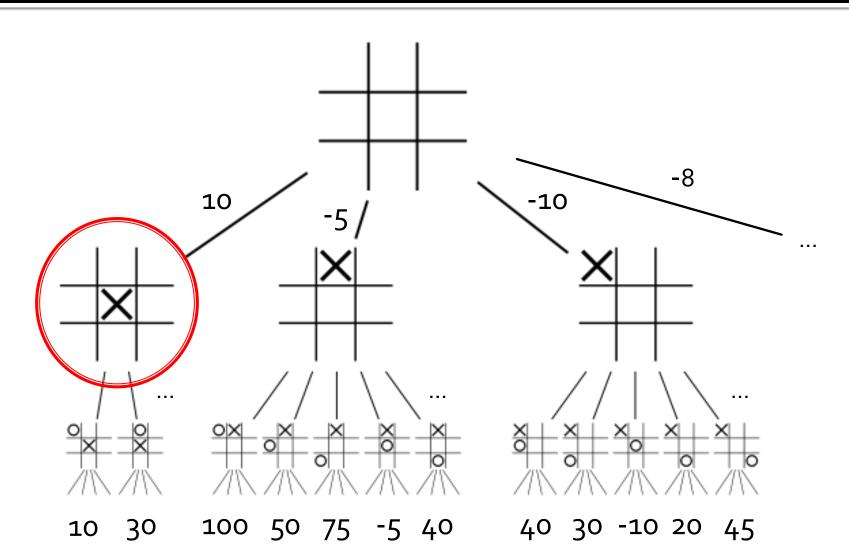
- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy



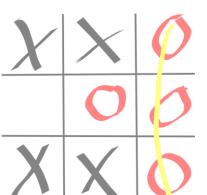
TicTacToe What does it mean?

- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy



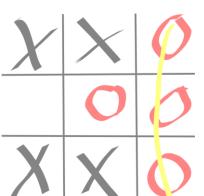


"Reasoning as search" -- Alan Newell


"Reasoning as search" => MIN-MAX algorithm + modifications

UT2004 What can be said?

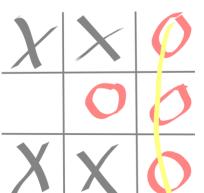
- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic
- Discrete vs. Continuous
- Known vs. Unknown
- Turn-based vs. Real-time
- Noiseless vs. Noisy



UT2004

The (almost) worst case imaginable!

- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic (weakly)
- Discrete vs. Continuous
- Known vs. Unknown (weakly)
- Turn-based vs. Real-time
- Noiseless vs. Noisy



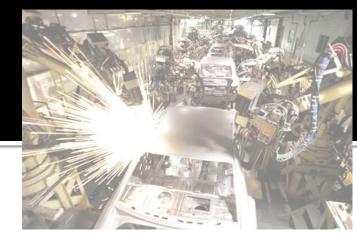
UT2004 => Hard to "search or plan"

- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic (weakly)
- Discrete vs. Continuous
- Known vs. Unknown (weakly)
- Turn-based vs. Real-time
- Noiseless vs. Noisy





UT2004


=> (Semi) Reactive Action-Selection

- Fully vs. Partially observable
- Episodic vs. Sequential
- Static vs. Dynamic
- Single vs. Multi agent
- Deterministic vs. Stochastic (weakly)
- Discrete vs. Continuous
- Known vs. Unknown (weakly)
- Turn-based vs. Real-time
- Noiseless vs. Noisy

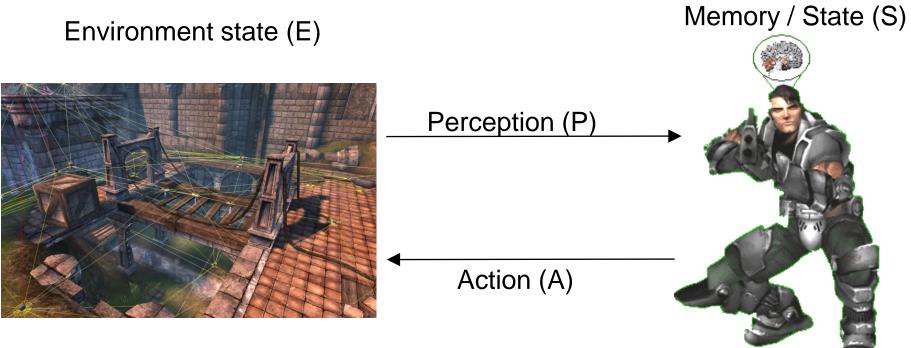
Pogamut 3 What?

Services %			Introspe
UT2004 Servers		- Propertie	
🗄 🚳 lo	cal [CTF-FaceClassic]		shouldEng
¢	Pogamut bots		shouldPurs
¢	- 🚑 Hunter		shouldRea
	E Logs		shouldColle
	Introspection		shouldColle
. E	- 🚑 Hunter		healthLeve
¢.	- 🙈 Hunter		frags
(E)	- 🙈 Hunter		deaths
Ð 🔁	Native players		
÷ 🕒	Timelines		
🗄 🗐 Datab	ases		
			a havid Da
Hudson Builders		shouldRe	
🗄 🙀 Issue	Trackers		

Introspection - Proper	ties % 🖃
Properties	
shouldEngage	V
shouldPursue	V
shouldRearm	
shouldCollectitems	V
shouldCollectHealth	V
healthLevel	90
frags	0
deaths	0
shouldRearm	0
	Properties shouldEngage shouldPursue shouldCollectitems shouldCollectitems shouldCollectHealth healthLevel frags deaths

PogamutCup 2015 Detour...

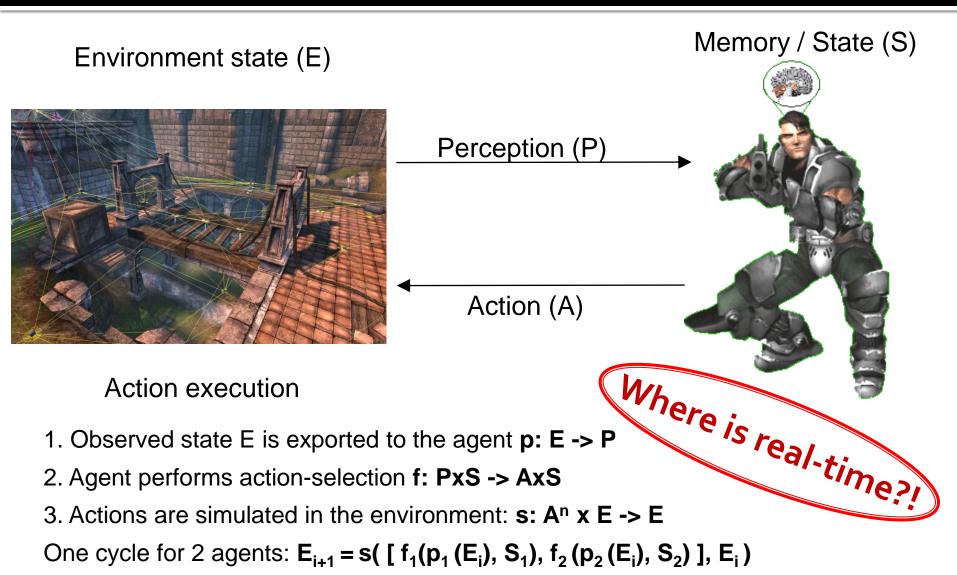
Tournament between computer-controlled bots inside complex 3D virtual environment of Unreal Tournament 2004


Concrete setup

1v1, death-match, known maps
match: up-to 10 frags or 10 minutes

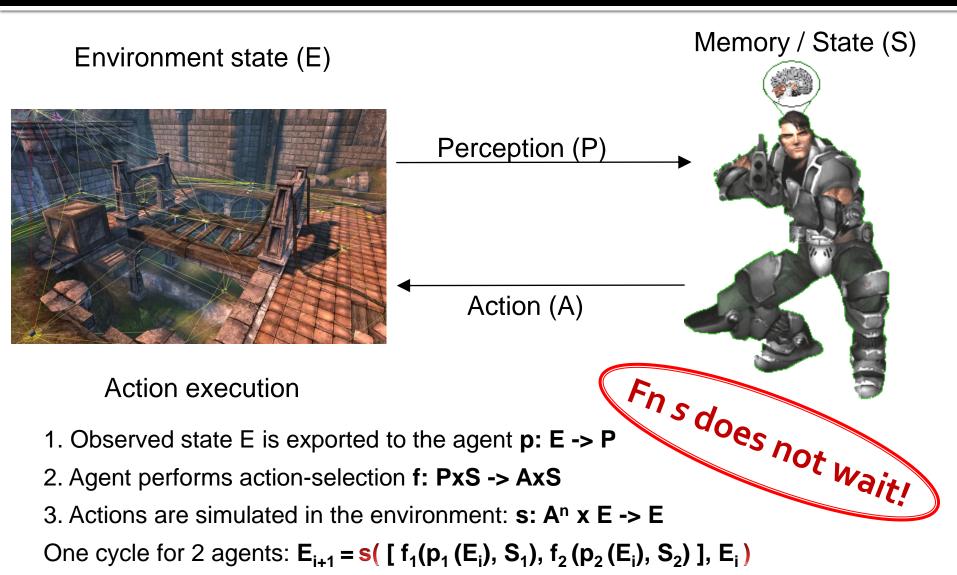
Find us at http://www.pogamutcup.com Registration opened till ? ? 2015 (to decide) Win the prize-money!

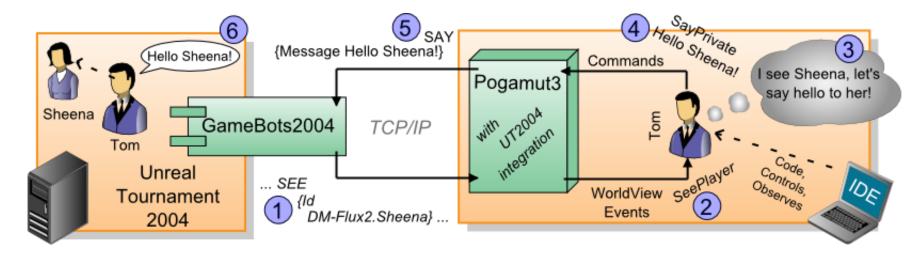
IVAs and Virtual Environments How it works?


Action execution

- 1. Observed state E is exported to the agent p: E -> P
- 2. Agent performs action-selection **f: PxS -> AxS**
- 3. Actions are simulated in the environment: **s:** $A^n \times E \rightarrow E$

One cycle for 2 agents: $E_{i+1} = s([f_1(p_1(E_i), S_1), f_2(p_2(E_i), S_2)], E_i)$


IVAs and Virtual Environments How it works?


IVAs and Virtual Environments How it works?


IVAs and Virtual Environments How it is implemented?

Let's TELNET-operate the bot!

UT2004/System/ucc.exe server DM-TrainingDay?game=GameBots2004.BotDeathMatch telnet 127.0.0.1 3000

First Pogamut 3 Bot Show time!

- Let's import first Pogamut 3 example bot!
 Check the tutorial at home:
 - <u>http://pogamut.cuni.cz/pogamut_files/latest/doc/</u> <u>tutorials/oo-EmptyBot.html</u>

See how easy is to code the bot! ③

Workshop website On Pogamut devel wiki...

Visit workshop website

- <u>http://pogamut.cuni.cz/pogamut-</u> <u>devel/doku.php?id=lectures:pilsen_pogamut_2014-15_summer_semester</u>
- 1) Go to <u>http://pogamut.cuni.cz</u>
- 2) Find a link to devel wiki (<u>http://pogamut.cuni.cz/pogamut-devel</u>)
- 3) In main menu Click Lectures
- 4) Find and click a link to this years Pilsen workshop website and ...

Get the First Empty Bot project template