University of West Bohemia, Pilsen
2" March 2015

UT2004 bots made easy!

Pogamut 3

Navigation & [tems,
Weapons & Shooting,
CTF

Practice Lesson

Outline

Pogamut 3 Platform

Pogamut World Abstraction
Navigation

Items & Weapons & Shooting
Capture the Flag (CTF)

Pogamut World Abstraction

Basics

Objects (IWorldObject): Events (IWorldEvent):
Player HearNoise & HearPickup
ltem BotDamaged & BotKilled
NavPoint PlayerDamaged & PlayerKilled,
Self Bumped
IncomingProjectile GlobalChat

Use modules, listeners and Pogamut helper classes!
this.players, this.items, this.info ...
MyCollections, DistanceUtils

if (this.players.canSeePlayers()) { ... }

@EventListener(eventClass = GlobalChat.class)
public void chat(GlobalChat chatEvent) {

}

UT2004 World Abstraction
Navigation graph

#Navpoints in the map = 100 - 5000

UT2004 World Abstraction

Underlaying classes — low level API

Classes of interest:

NavPoint, NavPointNeighbourLink, Item
ILocated, Location, DistanceUtils
ltemType, ItemType.Category

ltemDescriptor

Methods of interest:

this.items.getAllItems (ItemType)

this.descriptors.getDescriptor (ItemType)
this.world.getAll(NavPoint.class):> n
this.world.getAll (Item.class)
NavPoint.getOutgoingEdges ()

NavPoint.getIncomingEdges ()

e

UT2004 World Abstraction

Nav link/NavPoint types

NavPoints Nav links
JumpPad Walk
Lift Jump
Teleport _ift
Door Door
PlayerStart DoubleJump
SnipingSpot

InventorySpot

Practice Lesson

Outline

Pogamut 3 Platform

Pogamut World Abstraction
Navigation

Items & Weapons & Shooting
Capture the Flag (CTF)

Navigation

Step by step

Decide where to go
Plan the path (list of navpoints)

Follow the path

Handle jumps&lifts along the way!
Do you know right constants?
World is non-deterministic, be sure to check
how the action is executing!
=> IStuckDetector implementations

Don't worry it's already wrapped up ©

Navigation

Stages

Decide where to go (Decision making!)
1tems.getSpawnedItems (ItemType)
DistanceUtils.getNearest (..)
MyCollections.getRandom(...)
fwMap.getNearest (...)

Plan and follow the path
UT2004Navigation (this.navigation)

Navigation

UT2004Navigation

Complete navigation wrapper

UT2004Navigation (.., UT2004PathExecutor,
FloydWarshallMap, ..) (this.navigation)

Handles both path planning & path following
Can be called repeatedly

Main methods
navigation.navigate (..)
navigation.isNavigating ()

Uses
FloydWarshallMap (this.fwMap)
StuckDetectors
UT2004PathExecutor

Navigation

FloydWarshallMap

Pogamut path planner using Floyd Warshall
algorithm (O(n3))

Used by UT2004Navigation

Accessby this.fwMap

Methods of interest

fwMap.getNearest.. (...)

Works the same as in DistanceUtils, except the
distance is measured by the path length

Its ok to “spam” it (e.qg. checking all items in each
step), the nowadays computers can handle it

Navigation

Modifying the navigation graph

NavigationGraphBuilder

Accessby this.navBuilder

Methods of interest
navBullder.removekEdgesBetween (..)

If you use navBuilder in botlnitalized
method, everything will be applied
automatically

Otherwise, call fwMap.refreshPathMatrix ()
O(n3) !!

Navigation

StuckDetectors

Navigation Uses three stuck detectors
UT2004TimeStuckDetector(bot, 3000)

if the bot does not move for 3 seconds consider it is stuck
(check small velocity delta)

UT2004PositionStuckDetector()
watch over the position history of the bot, if the bot does not
move sufficiently enough, consider that it is stuck

DEFAULT_HISTORY_LENGTH, DEFAULT_MIN_DIAMETER,
DEFAULT_MIN_Z

UT2004DistanceStuckDetector()

counts how many times the bot was getting closer to the
target and how many times it was getting farther (if it
oscillates more than two times -> STUCK)

Navigation

Listening for navigation events

With a FlagListener! Add one with method addStrongNavigationListener

this.navigation.addStrongNavigationListener (
new FlagListener<NavigationState> () {
@Override
public void flagChanged (NavigationState
changedValue) {
switch (changedValue) {

case STUCK:
break;
case STOPPED:
break;
case TARGET REACHED:
break; a
case PATH COMPUTATION FAILED:
break; a a
case NAVIGATING:
break;

Navigation

Path following hell

UT2004PathExecutor
Custom Pogamut path following code

Heavily tweaked for UT2004 and game update
frequency 4 Hz (250 ms per synchronous batch)

The good
Works decently on non-complex maps
You don’t have to do it yourself

The bad

Has problems handling complex links
Spaghetti code

Navigation

UT2004AStar

When Floyd Warshall is not enough...
UT2004AStar (access by this.aStar)

this.aStar.findPath(from, to, IPFMapView);
Implement your own custom IPFMapView:

new IPFMapView<NavPoint> () {

public Collection<NavPoint> getExtraNeighbors (NavPoint node,
Collection<NavPoint> mapNeighbors) {}

public int getNodeExtraCost (NavPoint node, int mapCost) {}
public int getArcExtraCost (NavPoint nodeFrom, NavPoint nodeTo, int mapCost) {}
public boolean isNodeOpened (NavPoint node) {}

public boolean isArcOpened (NavPoint nodeFrom, NavPoint nodeTo) {}

Assighment 1

Let’s create NavigationBot
Choose NavPoint at random

Run to that NavPoint

Iterate

How to detect that the bot has stuck?
What if the location is currently
unreachable?

See TabooSet class

Practice Lesson

Outline

Pogamut 3 Platform

Pogamut World Abstraction
Navigation

ltems & Weapons & Shooting
Capture the Flag (CTF)

Iltems, Weapons, Shooting

ltems — basics

Ttem (module this.items !)
More “spawning location” than item
Unique Unrealid =>Canbeusedin Set, Map
ILocated ~ getLocation () ~X, Y, Z
IViewable ~1sVisible ()

Always has corresponding NavPoint instance

NavPoint i1itemNP = i1tem.getNavPoint ()

Described by TtemType
1tem.getType ()

Iltems, Weapons, Shooting

ltemType

ItemType

Enum holding concrete type of the item

Part of some ItemType.Category

Categories are divided based on what items are

intended to
ItemType.
ItemType.
ItemType.
ItemType.
ItemType.

do

Category.
Category.
Category.
Category.
Category.

HEALTH
ARMOR
SHIELD
WEAPON
AMMO

Iltems, Weapons, Shooting

Iltems

Agent module: items

.getAllItems ()
.getVisibleIltems (ItemType/)
.getSpawnedItems (ItemType)
.1sPickable (Item)

DistanceUtils
.getNearest (Collection<Ilocated>)
.getNthNearest (n,Collection<Ilocated>)

fwMap
.getNearestItem(Collection<Item>)

Iltems, Weapons, Shooting

Always collect interesting items

ItemType.FLAK CANNON
.MINIGUN
.LIGHTING GUN
.ROCKET LAUNCHER
.LINK GUN

ItemType.SUPER HEALTH
. SUPER ARMOR
.SHIELD PACK
. SUPER SHIELD PACK
.U DAMAGE PACK

Assighment 2

Alter NavigationBot into CollectorBot
Collect interesting items

How to check that your bot can pick some item?
items.isPickable (Item)

How to be sure that your bot has picked the item
up?
TtemPickedUp.class event

@EventListener (eventClass=
ItemPickedUp.class)

Be sure to handle “thin” items!

How to avoid unreachable items?
Use TabooSet

Iltems, Weapons, Shooting

ltemDescriptor(s)

Every item is “well” described

ITtem item =
items.getAll (ItemType.Category.WEAPONS) .values ()
.lterator () .next () ;

WeaponDescriptor weaponDesc =
(WeaponDescriptor)
descriptors.getDescriptor (item.getType()) ;

1f (weaponDesc.getPriDamage () > 50) {

Ammo/Armor/HealthDescriptor available as well

ltems, Weapons, Shooting

UT2004 weapons guide | —the weak

ItemType.SHIELD GUN (DEFAULT)
Melee weapon (can be charged)

Secondary mode —shield
ItemType.ASSAULT RIFLE (DEFAULT)

Weak, basic, inaccurate (but can be double wielded)

Secondary mode — grenades (charged)
ItemType.BIO RIFLE

Fires green blobs, short range, defense weapon

Secondary mode — charged (big blob)
ItemType.LINK GUN

Primary fires rather slow, but decent projectiles
Secondary — medium-to-short range beam

ltems, Weapons, Shooting

UT2004 weapons guide |l — the strong

ItemType.FLAK CANNON

Shotgun style weapon —deadly at short range

Sec. mode is a grenade launcher
ItemType . MINIGUN

Choose between rapid fire but less accuracy (pri. mode) or
slower fire and more accuracy (sec. mode)

ItemType.SHOCK RIFLE
Pri. mode is very accurate with medium damage

Sec. mode fires slow moving projectiles, that can be
detonated by pri. fire making a big explosion (tricky to do
though)

ItemType.LIGHTING GUN / SNIPER RIFLE
Sniper rifle — precise, can one-shot others by a headshot

Bots can use only pri. fire (sec. is zoom)

ltems, Weapons, Shooting

UT2004 weapons guide Ill - mayhem

ItemType.ROCKET LAUNCHER

Good old rocket launcher, rockets have splash
damage (beware!)

Secondary mode can charge up to three rockets
IltemType.REDEEMER

Unleash nuclear mayhem! (big splash damage radius)
Bots can use only primary firing mode!

ItemType.U DAMAGE PACK

Not enough damage? Grab DOUBLE DAMAGE pack and
double your damage output!

Iltems, Weapons, Shooting

Weaponry class

this.weaponry

all you wanted to know about UT2004 weapons
but were afraid to ask

weaponry.getCurrentWeapon ()
weaponry.hasWeapon (ItemType)
weaponry.hasLoadedWeapon ()
weaponry.hasPrimaryLoadedWeapon ()
weaponry.hasSecondaryLoadedWeapon ()
weaponry.getLoadedWeapons ()

weaponry.changeWeapon ()

Iltems, Weapons, Shooting

WeaponPreferences

Weapons' effectiveness depends on distance to target

Thus you should create different priority list for various

“ranges”

Wrapped in class weaponPrefs
weaponPrefs.addGeneral Pref (ItemType .MINIGUN, true);
weaponPrefs.addGeneralPref (ItemType.LINK GUN, false);

weaponPrefs.newPrefsRange (CLOSE COMBAT RANGE = 300)
.add (ItemType.FLAK CANNON, true)
.add (ItemType.LINK GUN, true); // 0-to-CLOSE

weaponPrefs.newPrefsRange (MEDIUM COMBAT RANGE = 1000)
.add (ItemType .MINIGUN, true)
.add (ItemType.ROCKET LAUNCHER, true); // CLOSE-to-MEDIUM

true -> primary firing mode

false -> secondary firing mode

If range prefs fails, general are used

You have to experiment! (== behavior parametrization!)

Iltems, Weapons, Shooting

Shooting

Shooting with WeaponPrefs is easy!

Player enemy =
players.getNearestVisiblePlayer () ;

shoot.shoot (weaponPrefs, enemy);

shoot.shoot (weaponPrefs, enemy,
TtemType.ROCKET LAUNCHER) ;

// do not use rocket launcher

shoot.shoot (weaponPrefs, enemy):;

shoot.setChangeWeaponCooldown (millis) ;

ltems, Weapons, Shooting

Time your shooting — Cooldown class

Sometimes you need to perform the behavior
“*onceinatime” =>Cooldown

Cooldown rocketCD = new Cooldown (2000) ;
// millis

1f (rocketCD.isCool ()) {
rocketCD.use () ;
shoot.shoot (weaponPrefs, enemy);
} else |
shoot.shoot (weaponPrefs, enemy,
ItemType.) 7

ltems, Weapons, Shooting

Time your behaviors — Heatup class

Sometimes you need to pursue some behavior for a
while => Heatup

Heatup pursueEnemy = new Heatup (3000) ;
// millis
1f (players.canSeeEnemy()) {

pursueknemy.heat () ;
// fight the enemy

} else

1f (pursueknemy.1isHot ()) {
// pursue the enemy

} else {

// collect items

J

Assignment 3

Alter CollectorBot into HunterBot
Prefer weapons when collecting items
Implement shooting behavior
Configure & Use weaponPrefs
Try to run directly towards your opponent
Create hunting behavior

Practice Lesson

Outline

Pogamut 3 Platform

Pogamut World Abstraction
Navigation

Items & Weapons & Shooting
Capture the Flag (CTF)

Capture the Flag (CTF)

Rules

Players/bots are divided into two teams (red and
blue).

Each team has a flag in his base.

The goal of the team is to capture the flag of the
opposite team and bring it to their home base.
When managed, the team scores 1 point.

Team can only bring opposite flag home and score a
point, if the team flag is in team home base!

If the flag is dropped it will be returned to home -
base after some time.

Pogamut CTF support

Bases & game status

CTF module

this.ctf
Where are the bases?

this.ctf.getOurBase();

this.ctf.getEnemyBase();
Whats the game status?

this.ctf.canOurTeamScore();
this.ctf.canEnemyTeamScore();
Am | winning?
game.getTeamScores();
info.getTeamScore();

Pogamut CTF support I

Flags

| want my flag!

Flag is represented by Flaginfo object.
this.ctf.getOurFlag();
this.ctf.getEnemyFlag();

Is someone messing with my flag?
this.ctf.isOurFlagHome();
this.ctf.isOurFlagHeld();

How about enemy flag?
this.ctf.isEnemyFlagHome();
this.ctf.isEnemyFlagHeld();

Pogamut CTF support il

Team communication

Use SendMessage command.

this.act.act(new
SendMessage().setTeamIndex(info.getTeam()).setText(*Help"));

Listen to team message with TeamChat
event.

@EventListener(eventClass = TeamChat.class)
public void teamChat(TeamChat event) {

Assignment 4

Alter HunterBot into CTFBot
Arm yourself before going into action!
Try to get enemy flag!
Try to get your flag, if it is stolen!

Assignment 5 (bonus)

Create RocketDodgeBot dodging enemy
rockets!

Dodge commands works properly in 3.5.1-
SNAPSHOT

Navigation — detailed

Path planner & Path executor

Plan the path (list of navpoints)
pathPlanner.computePath (

ILocated from, to)

Watch out for UT2004 quirks! Max 31 navpoints per path (+
starting position location == 32 path points).

fwMap.computePath (NavPoint from, to)
Plans path only between NavPoints

Follow the path
pathExecutor.followPath (path)
pathExecutor.1skExecuting ()
Watch out for its statefullness!

Navigation — detailed

fwMap vs. pathPlanner

pathPlanner fwMap
Path is planned at UT2004 Floyd-Warshall
=> slower

Graph is fixed O(n) path retrievel

May plan everywhere Graph may be altered
Has limit ~ 32 path points Can’t plan to all locations

pathExecutor works with both!

