
UT2004 bots made easy!

University of West Bohemia, Pilsen
2nd March 2015

Navigation & Items,
Weapons & Shooting,
CTF

Pogamut 3 Platform

1. Pogamut World Abstraction
2. Navigation
3. Items & Weapons & Shooting
4. Capture the Flag (CTF)

Objects (IWorldObject):
 Player
 Item
 NavPoint
 Self
 IncomingProjectile

Events (IWorldEvent):
 HearNoise & HearPickup
 BotDamaged & BotKilled
 PlayerDamaged & PlayerKilled,
 Bumped
 GlobalChat

 Use modules, listeners and Pogamut helper classes!
 this.players, this.items, this.info …
 MyCollections, DistanceUtils

if (this.players.canSeePlayers()) { … }

@EventListener(eventClass = GlobalChat.class)
public void chat(GlobalChat chatEvent) {
 …
}

#Navpoints in the map = 100 – 5000

Classes of interest:

NavPoint, NavPointNeighbourLink, Item

ILocated, Location, DistanceUtils

ItemType, ItemType.Category

ItemDescriptor

Methods of interest:
this.items.getAllItems(ItemType)

this.descriptors.getDescriptor(ItemType)

this.world.getAll(NavPoint.class)

this.world.getAll(Item.class)

NavPoint.getOutgoingEdges()

NavPoint.getIncomingEdges()

!!!

 NavPoints

 JumpPad

 Lift

 Teleport

 Door

 PlayerStart

 SnipingSpot

 InventorySpot

 …

 Nav links

 Walk

 Jump

 Lift

 Door

 DoubleJump

 …

Pogamut 3 Platform

1. Pogamut World Abstraction
2. Navigation
3. Items & Weapons & Shooting
4. Capture the Flag (CTF)

1. Decide where to go
2. Plan the path (list of navpoints)
3. Follow the path

Don’t worry it’s already wrapped up

• Handle jumps&lifts along the way!
• Do you know right constants?

• World is non-deterministic, be sure to check
how the action is executing!

 => IStuckDetector implementations

1. Decide where to go (Decision making!)
 items.getSpawnedItems(ItemType)

 DistanceUtils.getNearest(…)

 MyCollections.getRandom(…)

 fwMap.getNearest(…)

2. Plan and follow the path

 UT2004Navigation (this.navigation)

 Complete navigation wrapper
 UT2004Navigation(…, UT2004PathExecutor,

FloydWarshallMap, …) (this.navigation)

 Handles both path planning & path following
 Can be called repeatedly

 Main methods
 navigation.navigate(…)

 navigation.isNavigating()

 Uses
 FloydWarshallMap (this.fwMap)

 StuckDetectors

 UT2004PathExecutor

 Pogamut path planner using Floyd Warshall
algorithm (O(n3) !)

 Used by UT2004Navigation

 Access by this.fwMap

 Methods of interest
 fwMap.getNearest…(…)

▪ Works the same as in DistanceUtils, except the
distance is measured by the path length

▪ Its ok to “spam” it (e.g. checking all items in each
step), the nowadays computers can handle it

 NavigationGraphBuilder
 Access by this.navBuilder

 Methods of interest
 navBuilder.removeEdgesBetween(…)

 If you use navBuilder in botInitalized
method, everything will be applied
automatically

 Otherwise, call fwMap.refreshPathMatrix()
▪ O(n3) !!

 Navigation Uses three stuck detectors
 UT2004TimeStuckDetector(bot, 3000)
 if the bot does not move for 3 seconds consider it is stuck

(check small velocity delta)

 UT2004PositionStuckDetector()
 watch over the position history of the bot, if the bot does not

move sufficiently enough, consider that it is stuck
 DEFAULT_HISTORY_LENGTH, DEFAULT_MIN_DIAMETER,

DEFAULT_MIN_Z

 UT2004DistanceStuckDetector()
 counts how many times the bot was getting closer to the

target and how many times it was getting farther (if it
oscillates more than two times -> STUCK)

 With a FlagListener! Add one with method addStrongNavigationListener

 this.navigation.addStrongNavigationListener(
 new FlagListener<NavigationState>() {
 @Override
 public void flagChanged(NavigationState

changedValue){
 switch (changedValue) {
 case STUCK:
 break;
 case STOPPED:
 break;
 case TARGET_REACHED:
 break;
 case PATH_COMPUTATION_FAILED:
 break;
 case NAVIGATING:
 break;
 }
 }
 });

 UT2004PathExecutor
 Custom Pogamut path following code
 Heavily tweaked for UT2004 and game update

frequency 4 Hz (250 ms per synchronous batch)
 The good
 Works decently on non-complex maps

 You don’t have to do it yourself
 The bad
 Has problems handling complex links

 Spaghetti code

 When Floyd Warshall is not enough…
 UT2004AStar (access by this.aStar)

 this.aStar.findPath(from, to, IPFMapView);

 Implement your own custom IPFMapView:
 new IPFMapView<NavPoint>() {

 public Collection<NavPoint> getExtraNeighbors(NavPoint node,

Collection<NavPoint> mapNeighbors) {}

 public int getNodeExtraCost(NavPoint node, int mapCost) {}

 public int getArcExtraCost(NavPoint nodeFrom, NavPoint nodeTo, int mapCost) {}

 public boolean isNodeOpened(NavPoint node) {}

 public boolean isArcOpened(NavPoint nodeFrom, NavPoint nodeTo) {}

}

 Let’s create NavigationBot

 Choose NavPoint at random

 Run to that NavPoint

 Iterate

 How to detect that the bot has stuck?
 What if the location is currently

unreachable?

 See TabooSet class

Pogamut 3 Platform

1. Pogamut World Abstraction
2. Navigation
3. Items & Weapons & Shooting
4. Capture the Flag (CTF)

 Item (module this.items !)

 More “spawning location” than item

 Unique UnrealId => Can be used in Set, Map

 ILocated ~ getLocation() ~ X, Y, Z

 IViewable ~ isVisible()

 Always has corresponding NavPoint instance
▪ NavPoint itemNP = item.getNavPoint()

 Described by ItemType

▪ item.getType()

 ItemType

 Enum holding concrete type of the item

 Part of some ItemType.Category

▪ Categories are divided based on what items are
intended to do

▪ ItemType.Category.HEALTH

▪ ItemType.Category.ARMOR

▪ ItemType.Category.SHIELD

▪ ItemType.Category.WEAPON

▪ ItemType.Category.AMMO

 Agent module: items
.getAllItems()

.getVisibleItems(ItemType/)

.getSpawnedItems(ItemType)

.isPickable(Item)

 DistanceUtils

.getNearest(Collection<Ilocated>)

.getNthNearest(n,Collection<Ilocated>)

 fwMap

.getNearestItem(Collection<Item>)

ItemType.FLAK_CANNON

 .MINIGUN

 .LIGHTING_GUN

 .ROCKET_LAUNCHER

 .LINK_GUN

ItemType.SUPER_HEALTH

 .SUPER_ARMOR

 .SHIELD_PACK

 .SUPER_SHIELD_PACK

 .U_DAMAGE_PACK

 Alter NavigationBot into CollectorBot

 Collect interesting items

 How to check that your bot can pick some item?
 items.isPickable(Item)

 How to be sure that your bot has picked the item
up?
 ItemPickedUp.class event
 @EventListener(eventClass=
ItemPickedUp.class)

 Be sure to handle “thin” items!

 How to avoid unreachable items?
 Use TabooSet

 Every item is “well” described

Item item =

items.getAll(ItemType.Category.WEAPONS).values()

 .iterator().next();

WeaponDescriptor weaponDesc =

 (WeaponDescriptor)

 descriptors.getDescriptor(item.getType());

if (weaponDesc.getPriDamage() > 50) {

…

}

 Ammo/Armor/HealthDescriptor available as well

 ItemType.SHIELD_GUN (DEFAULT)

 Melee weapon (can be charged)
 Secondary mode – shield

 ItemType.ASSAULT_RIFLE (DEFAULT)

 Weak, basic, inaccurate (but can be double wielded)
 Secondary mode – grenades (charged)

 ItemType.BIO_RIFLE

 Fires green blobs, short range, defense weapon
 Secondary mode – charged (big blob)

 ItemType.LINK_GUN

 Primary fires rather slow, but decent projectiles
 Secondary – medium-to-short range beam

 ItemType.FLAK_CANNON

 Shotgun style weapon – deadly at short range
 Sec. mode is a grenade launcher

 ItemType.MINIGUN

 Choose between rapid fire but less accuracy (pri. mode) or
slower fire and more accuracy (sec. mode)

 ItemType.SHOCK_RIFLE

 Pri. mode is very accurate with medium damage
 Sec. mode fires slow moving projectiles, that can be

detonated by pri. fire making a big explosion (tricky to do
though)

 ItemType.LIGHTING_GUN / SNIPER_RIFLE

 Sniper rifle – precise, can one-shot others by a headshot
 Bots can use only pri. fire (sec. is zoom)

 ItemType.ROCKET_LAUNCHER

 Good old rocket launcher, rockets have splash
damage (beware!)

 Secondary mode can charge up to three rockets
 ItemType.REDEEMER

 Unleash nuclear mayhem! (big splash damage radius)

 Bots can use only primary firing mode!

 ItemType.U_DAMAGE_PACK

 Not enough damage? Grab DOUBLE DAMAGE pack and
double your damage output!

 this.weaponry

 all you wanted to know about UT2004 weapons
but were afraid to ask

weaponry.getCurrentWeapon()

weaponry.hasWeapon(ItemType)

weaponry.hasLoadedWeapon()

weaponry.hasPrimaryLoadedWeapon()

weaponry.hasSecondaryLoadedWeapon()

weaponry.getLoadedWeapons()

weaponry.changeWeapon()

…

 Weapons’ effectiveness depends on distance to target
 Thus you should create different priority list for various

“ranges”
 Wrapped in class weaponPrefs

weaponPrefs.addGeneralPref(ItemType.MINIGUN, true);
weaponPrefs.addGeneralPref(ItemType.LINK_GUN, false);

weaponPrefs.newPrefsRange(CLOSE_COMBAT_RANGE = 300)
 .add(ItemType.FLAK_CANNON, true)
 .add(ItemType.LINK_GUN, true); // 0-to-CLOSE

weaponPrefs.newPrefsRange(MEDIUM_COMBAT_RANGE = 1000)
 .add(ItemType.MINIGUN, true)
 .add(ItemType.ROCKET_LAUNCHER, true); // CLOSE-to-MEDIUM

 true -> primary firing mode
 false -> secondary firing mode
 If range prefs fails, general are used
 You have to experiment! (== behavior parametrization!)

 Shooting with WeaponPrefs is easy!

Player enemy =

players.getNearestVisiblePlayer();

shoot.shoot(weaponPrefs, enemy);

shoot.shoot(weaponPrefs, enemy,

ItemType.ROCKET_LAUNCHER);

// do not use rocket launcher

shoot.shoot(weaponPrefs, enemy);

shoot.setChangeWeaponCooldown(millis);

 Sometimes you need to perform the behavior
“once in a time” => Cooldown

Cooldown rocketCD = new Cooldown(2000);
 // millis

if (rocketCD.isCool()) {
 rocketCD.use();
 shoot.shoot(weaponPrefs, enemy);
} else {
 shoot.shoot(weaponPrefs, enemy,

ItemType.ROCKET_LAUNCHER);
}

 Sometimes you need to pursue some behavior for a
while => Heatup

Heatup pursueEnemy = new Heatup(3000);
 // millis

if (players.canSeeEnemy()) {
 pursueEnemy.heat();
 // fight the enemy
} else
if (pursueEnemy.isHot()) {
 // pursue the enemy
} else {
 // collect items
}

 Alter CollectorBot into HunterBot
 Prefer weapons when collecting items
 Implement shooting behavior
 Configure & Use weaponPrefs
 Try to run directly towards your opponent
 Create hunting behavior

Pogamut 3 Platform

1. Pogamut World Abstraction
2. Navigation
3. Items & Weapons & Shooting
4. Capture the Flag (CTF)

 Players/bots are divided into two teams (red and
blue).

 Each team has a flag in his base.
 The goal of the team is to capture the flag of the

opposite team and bring it to their home base.
 When managed, the team scores 1 point.

 Team can only bring opposite flag home and score a
point, if the team flag is in team home base!

 If the flag is dropped it will be returned to home
base after some time.

 CTF module
 this.ctf

 Where are the bases?
 this.ctf.getOurBase();
 this.ctf.getEnemyBase();

 Whats the game status?
 this.ctf.canOurTeamScore();
 this.ctf.canEnemyTeamScore();

 Am I winning?
 game.getTeamScores();
 info.getTeamScore();

 I want my flag!
 Flag is represented by FlagInfo object.
 this.ctf.getOurFlag();

 this.ctf.getEnemyFlag();

 Is someone messing with my flag?
 this.ctf.isOurFlagHome();

 this.ctf.isOurFlagHeld();

 How about enemy flag?
 this.ctf.isEnemyFlagHome();

 this.ctf.isEnemyFlagHeld();

 Use SendMessage command.
 this.act.act(new

SendMessage().setTeamIndex(info.getTeam()).setText(“Help”));

 Listen to team message with TeamChat
event.

@EventListener(eventClass = TeamChat.class)

public void teamChat(TeamChat event) {

 …

}

 Alter HunterBot into CTFBot
 Arm yourself before going into action!
 Try to get enemy flag!
 Try to get your flag, if it is stolen!

 Create RocketDodgeBot dodging enemy
rockets!
 Dodge commands works properly in 3.5.1-

SNAPSHOT

1. Plan the path (list of navpoints)
 pathPlanner.computePath(

 ILocated from, to)

▪ Watch out for UT2004 quirks! Max 31 navpoints per path (+
starting position location == 32 path points).

 fwMap.computePath(NavPoint from, to)

▪ Plans path only between NavPoints

2. Follow the path
 pathExecutor.followPath(path)

 pathExecutor.isExecuting()

 Watch out for its statefullness!

fwMap
 Floyd-Warshall

 O(n) path retrievel

 Graph may be altered
 Can’t plan to all locations

pathPlanner
 Path is planned at UT2004

=> slower
 Graph is fixed
 May plan everywhere
 Has limit ~ 32 path points

pathExecutor works with both!

