
UT2004 bots made easy!

University of West Bohemia, Pilsen
2nd March 2015

Navigation & Items,
Weapons & Shooting,
CTF

Pogamut 3 Platform

1. Pogamut World Abstraction
2. Navigation
3. Items & Weapons & Shooting
4. Capture the Flag (CTF)

Objects (IWorldObject):
 Player
 Item
 NavPoint
 Self
 IncomingProjectile

Events (IWorldEvent):
 HearNoise & HearPickup
 BotDamaged & BotKilled
 PlayerDamaged & PlayerKilled,
 Bumped
 GlobalChat

 Use modules, listeners and Pogamut helper classes!
 this.players, this.items, this.info …
 MyCollections, DistanceUtils

if (this.players.canSeePlayers()) { … }

@EventListener(eventClass = GlobalChat.class)
public void chat(GlobalChat chatEvent) {
 …
}

#Navpoints in the map = 100 – 5000

Classes of interest:

NavPoint, NavPointNeighbourLink, Item

ILocated, Location, DistanceUtils

ItemType, ItemType.Category

ItemDescriptor

Methods of interest:
this.items.getAllItems(ItemType)

this.descriptors.getDescriptor(ItemType)

this.world.getAll(NavPoint.class)

this.world.getAll(Item.class)

NavPoint.getOutgoingEdges()

NavPoint.getIncomingEdges()

!!!

 NavPoints

 JumpPad

 Lift

 Teleport

 Door

 PlayerStart

 SnipingSpot

 InventorySpot

 …

 Nav links

 Walk

 Jump

 Lift

 Door

 DoubleJump

 …

Pogamut 3 Platform

1. Pogamut World Abstraction
2. Navigation
3. Items & Weapons & Shooting
4. Capture the Flag (CTF)

1. Decide where to go
2. Plan the path (list of navpoints)
3. Follow the path

Don’t worry it’s already wrapped up 

• Handle jumps&lifts along the way!
• Do you know right constants?

• World is non-deterministic, be sure to check
how the action is executing!

 => IStuckDetector implementations

1. Decide where to go (Decision making!)
 items.getSpawnedItems(ItemType)

 DistanceUtils.getNearest(…)

 MyCollections.getRandom(…)

 fwMap.getNearest(…)

2. Plan and follow the path

 UT2004Navigation (this.navigation)

 Complete navigation wrapper
 UT2004Navigation(…, UT2004PathExecutor,

FloydWarshallMap, …) (this.navigation)

 Handles both path planning & path following
 Can be called repeatedly

 Main methods
 navigation.navigate(…)

 navigation.isNavigating()

 Uses
 FloydWarshallMap (this.fwMap)

 StuckDetectors

 UT2004PathExecutor

 Pogamut path planner using Floyd Warshall
algorithm (O(n3) !)

 Used by UT2004Navigation

 Access by this.fwMap

 Methods of interest
 fwMap.getNearest…(…)

▪ Works the same as in DistanceUtils, except the
distance is measured by the path length

▪ Its ok to “spam” it (e.g. checking all items in each
step), the nowadays computers can handle it

 NavigationGraphBuilder
 Access by this.navBuilder

 Methods of interest
 navBuilder.removeEdgesBetween(…)

 If you use navBuilder in botInitalized
method, everything will be applied
automatically

 Otherwise, call fwMap.refreshPathMatrix()
▪ O(n3) !!

 Navigation Uses three stuck detectors
 UT2004TimeStuckDetector(bot, 3000)
 if the bot does not move for 3 seconds consider it is stuck

(check small velocity delta)

 UT2004PositionStuckDetector()
 watch over the position history of the bot, if the bot does not

move sufficiently enough, consider that it is stuck
 DEFAULT_HISTORY_LENGTH, DEFAULT_MIN_DIAMETER,

DEFAULT_MIN_Z

 UT2004DistanceStuckDetector()
 counts how many times the bot was getting closer to the

target and how many times it was getting farther (if it
oscillates more than two times -> STUCK)

 With a FlagListener! Add one with method addStrongNavigationListener

 this.navigation.addStrongNavigationListener(
 new FlagListener<NavigationState>() {
 @Override
 public void flagChanged(NavigationState

changedValue){
 switch (changedValue) {
 case STUCK:
 break;
 case STOPPED:
 break;
 case TARGET_REACHED:
 break;
 case PATH_COMPUTATION_FAILED:
 break;
 case NAVIGATING:
 break;
 }
 }
 });

 UT2004PathExecutor
 Custom Pogamut path following code
 Heavily tweaked for UT2004 and game update

frequency 4 Hz (250 ms per synchronous batch)
 The good
 Works decently on non-complex maps

 You don’t have to do it yourself
 The bad
 Has problems handling complex links

 Spaghetti code

 When Floyd Warshall is not enough…
 UT2004AStar (access by this.aStar)

 this.aStar.findPath(from, to, IPFMapView);

 Implement your own custom IPFMapView:
 new IPFMapView<NavPoint>() {

 public Collection<NavPoint> getExtraNeighbors(NavPoint node,

Collection<NavPoint> mapNeighbors) {}

 public int getNodeExtraCost(NavPoint node, int mapCost) {}

 public int getArcExtraCost(NavPoint nodeFrom, NavPoint nodeTo, int mapCost) {}

 public boolean isNodeOpened(NavPoint node) {}

 public boolean isArcOpened(NavPoint nodeFrom, NavPoint nodeTo) {}

}

 Let’s create NavigationBot

 Choose NavPoint at random

 Run to that NavPoint

 Iterate

 How to detect that the bot has stuck?
 What if the location is currently

unreachable?

 See TabooSet class

Pogamut 3 Platform

1. Pogamut World Abstraction
2. Navigation
3. Items & Weapons & Shooting
4. Capture the Flag (CTF)

 Item (module this.items !)

 More “spawning location” than item

 Unique UnrealId => Can be used in Set, Map

 ILocated ~ getLocation() ~ X, Y, Z

 IViewable ~ isVisible()

 Always has corresponding NavPoint instance
▪ NavPoint itemNP = item.getNavPoint()

 Described by ItemType

▪ item.getType()

 ItemType

 Enum holding concrete type of the item

 Part of some ItemType.Category

▪ Categories are divided based on what items are
intended to do

▪ ItemType.Category.HEALTH

▪ ItemType.Category.ARMOR

▪ ItemType.Category.SHIELD

▪ ItemType.Category.WEAPON

▪ ItemType.Category.AMMO

 Agent module: items
.getAllItems()

.getVisibleItems(ItemType/)

.getSpawnedItems(ItemType)

.isPickable(Item)

 DistanceUtils

.getNearest(Collection<Ilocated>)

.getNthNearest(n,Collection<Ilocated>)

 fwMap

.getNearestItem(Collection<Item>)

ItemType.FLAK_CANNON

 .MINIGUN

 .LIGHTING_GUN

 .ROCKET_LAUNCHER

 .LINK_GUN

ItemType.SUPER_HEALTH

 .SUPER_ARMOR

 .SHIELD_PACK

 .SUPER_SHIELD_PACK

 .U_DAMAGE_PACK

 Alter NavigationBot into CollectorBot

 Collect interesting items

 How to check that your bot can pick some item?
 items.isPickable(Item)

 How to be sure that your bot has picked the item
up?
 ItemPickedUp.class event
 @EventListener(eventClass=
ItemPickedUp.class)

 Be sure to handle “thin” items!

 How to avoid unreachable items?
 Use TabooSet

 Every item is “well” described

Item item =

items.getAll(ItemType.Category.WEAPONS).values()

 .iterator().next();

WeaponDescriptor weaponDesc =

 (WeaponDescriptor)

 descriptors.getDescriptor(item.getType());

if (weaponDesc.getPriDamage() > 50) {

…

}

 Ammo/Armor/HealthDescriptor available as well

 ItemType.SHIELD_GUN (DEFAULT)

 Melee weapon (can be charged)
 Secondary mode – shield

 ItemType.ASSAULT_RIFLE (DEFAULT)

 Weak, basic, inaccurate (but can be double wielded)
 Secondary mode – grenades (charged)

 ItemType.BIO_RIFLE

 Fires green blobs, short range, defense weapon
 Secondary mode – charged (big blob)

 ItemType.LINK_GUN

 Primary fires rather slow, but decent projectiles
 Secondary – medium-to-short range beam

 ItemType.FLAK_CANNON

 Shotgun style weapon – deadly at short range
 Sec. mode is a grenade launcher

 ItemType.MINIGUN

 Choose between rapid fire but less accuracy (pri. mode) or
slower fire and more accuracy (sec. mode)

 ItemType.SHOCK_RIFLE

 Pri. mode is very accurate with medium damage
 Sec. mode fires slow moving projectiles, that can be

detonated by pri. fire making a big explosion (tricky to do
though)

 ItemType.LIGHTING_GUN / SNIPER_RIFLE

 Sniper rifle – precise, can one-shot others by a headshot
 Bots can use only pri. fire (sec. is zoom)

 ItemType.ROCKET_LAUNCHER

 Good old rocket launcher, rockets have splash
damage (beware!)

 Secondary mode can charge up to three rockets
 ItemType.REDEEMER

 Unleash nuclear mayhem! (big splash damage radius)

 Bots can use only primary firing mode!

 ItemType.U_DAMAGE_PACK

 Not enough damage? Grab DOUBLE DAMAGE pack and
double your damage output!

 this.weaponry

 all you wanted to know about UT2004 weapons
but were afraid to ask

weaponry.getCurrentWeapon()

weaponry.hasWeapon(ItemType)

weaponry.hasLoadedWeapon()

weaponry.hasPrimaryLoadedWeapon()

weaponry.hasSecondaryLoadedWeapon()

weaponry.getLoadedWeapons()

weaponry.changeWeapon()

…

 Weapons’ effectiveness depends on distance to target
 Thus you should create different priority list for various

“ranges”
 Wrapped in class weaponPrefs

weaponPrefs.addGeneralPref(ItemType.MINIGUN, true);
weaponPrefs.addGeneralPref(ItemType.LINK_GUN, false);

weaponPrefs.newPrefsRange(CLOSE_COMBAT_RANGE = 300)
 .add(ItemType.FLAK_CANNON, true)
 .add(ItemType.LINK_GUN, true); // 0-to-CLOSE

weaponPrefs.newPrefsRange(MEDIUM_COMBAT_RANGE = 1000)
 .add(ItemType.MINIGUN, true)
 .add(ItemType.ROCKET_LAUNCHER, true); // CLOSE-to-MEDIUM

 true -> primary firing mode
 false -> secondary firing mode
 If range prefs fails, general are used
 You have to experiment! (== behavior parametrization!)

 Shooting with WeaponPrefs is easy!

Player enemy =

players.getNearestVisiblePlayer();

shoot.shoot(weaponPrefs, enemy);

shoot.shoot(weaponPrefs, enemy,

ItemType.ROCKET_LAUNCHER);

// do not use rocket launcher

shoot.shoot(weaponPrefs, enemy);

shoot.setChangeWeaponCooldown(millis);

 Sometimes you need to perform the behavior
“once in a time” => Cooldown

Cooldown rocketCD = new Cooldown(2000);
 // millis

if (rocketCD.isCool()) {
 rocketCD.use();
 shoot.shoot(weaponPrefs, enemy);
} else {
 shoot.shoot(weaponPrefs, enemy,

ItemType.ROCKET_LAUNCHER);
}

 Sometimes you need to pursue some behavior for a
while => Heatup

Heatup pursueEnemy = new Heatup(3000);
 // millis

if (players.canSeeEnemy()) {
 pursueEnemy.heat();
 // fight the enemy
} else
if (pursueEnemy.isHot()) {
 // pursue the enemy
} else {
 // collect items
}

 Alter CollectorBot into HunterBot
 Prefer weapons when collecting items
 Implement shooting behavior
 Configure & Use weaponPrefs
 Try to run directly towards your opponent
 Create hunting behavior

Pogamut 3 Platform

1. Pogamut World Abstraction
2. Navigation
3. Items & Weapons & Shooting
4. Capture the Flag (CTF)

 Players/bots are divided into two teams (red and
blue).

 Each team has a flag in his base.
 The goal of the team is to capture the flag of the

opposite team and bring it to their home base.
 When managed, the team scores 1 point.

 Team can only bring opposite flag home and score a
point, if the team flag is in team home base!

 If the flag is dropped it will be returned to home
base after some time.

 CTF module
 this.ctf

 Where are the bases?
 this.ctf.getOurBase();
 this.ctf.getEnemyBase();

 Whats the game status?
 this.ctf.canOurTeamScore();
 this.ctf.canEnemyTeamScore();

 Am I winning?
 game.getTeamScores();
 info.getTeamScore();

 I want my flag!
 Flag is represented by FlagInfo object.
 this.ctf.getOurFlag();

 this.ctf.getEnemyFlag();

 Is someone messing with my flag?
 this.ctf.isOurFlagHome();

 this.ctf.isOurFlagHeld();

 How about enemy flag?
 this.ctf.isEnemyFlagHome();

 this.ctf.isEnemyFlagHeld();

 Use SendMessage command.
 this.act.act(new

SendMessage().setTeamIndex(info.getTeam()).setText(“Help”));

 Listen to team message with TeamChat
event.

@EventListener(eventClass = TeamChat.class)

public void teamChat(TeamChat event) {

 …

}

 Alter HunterBot into CTFBot
 Arm yourself before going into action!
 Try to get enemy flag!
 Try to get your flag, if it is stolen!

 Create RocketDodgeBot dodging enemy
rockets!
 Dodge commands works properly in 3.5.1-

SNAPSHOT

1. Plan the path (list of navpoints)
 pathPlanner.computePath(

 ILocated from, to)

▪ Watch out for UT2004 quirks! Max 31 navpoints per path (+
starting position location == 32 path points).

 fwMap.computePath(NavPoint from, to)

▪ Plans path only between NavPoints

2. Follow the path
 pathExecutor.followPath(path)

 pathExecutor.isExecuting()

 Watch out for its statefullness!

fwMap
 Floyd-Warshall

 O(n) path retrievel

 Graph may be altered
 Can’t plan to all locations

pathPlanner
 Path is planned at UT2004

=> slower
 Graph is fixed
 May plan everywhere
 Has limit ~ 32 path points

pathExecutor works with both!

