
POGAMUT 2 – A PLATFORM FOR FAST DEVELOPMENT OF VIRTUAL
AGENTS’ BEHAVIOR

Rudolf Kadlec, Jakub Gemrot, Ondřej Burkert, Michal Bída, Jan Havlíček, Cyril Brom
Charles University in Prague, Faculty of Mathematics and Physics

Dept. of Software and Computer Science Education, Prague, Czech Republic
rudolf.kadlec@gmail.com, jakub.gemrot@gmail.com, brom@ksvi.mff.cuni.cz

http://artemis.ms.mff.cuni.cz

ABSTRACT

Pogamut 2 is a freeware platform for rapid
development of behavior of virtual agents embodied in a
3D environment of Unreal Tournament 2004. Pogamut 2
is specifically intended for research and educational
purposes. A set of tutorials and videos makes it viable for
newcomers.

In this paper, we describe unique features of Pogamut
2, which includes an “easy-to-cope with” integrated
development environment, log management, and scripting
language for running experiments. The platform
architecture and intended workflow is also presented.

Keywords: Virtual agents, behavior, Unreal Tournament,
3D environment, agent development platform.

INTRODUCTION

Virtual agent is an embodied agent that is graphically
represented by an avatar in the environment. The
development of a complex behavior of a virtual agent
acting in a human-like 3D world is in general very hard.
There are two main reasons for this. Firstly, virtual agents
act in a dynamic, unpredictable, interactive world.
Secondly, virtual agent’s goals can include many complex
tasks – from movement in the environment to social
interactions and emotional responses.

Nowadays, there are a lot of applications featuring virtual
agents ranging from commercial computer games,
through serious games (Aylett et al., 2005) to therapeutic
tools (Hodges et al., 2001) and virtual storytelling
(Cavazza et al. 2004). It is essential to have a high-quality
agent development tool for fast prototyping of behavior of
a virtual agent. Many different applications feature many
advanced development tools, however, they are typically
not donwloadable for public use. Moreover, those tools
are domain-specific and cannot be used in general.

Therefore, newcoming students and researchers, who are
concerned with virtual agents development are forced to
use commercial (e.g. AI-Implant1, SoftImage2,
Xaitment3), or freeware tools that facilitate agent
development.

Commercial tools are inappropriate for newcomers in the
field for several reasons. Firstly, they imply the
knowledge of many advanced AI algorithms they
implement. Secondly, they have to be connected to some
virtual world and implementing this connection is not a
trivial task. Moreover, they are quite expensive.

Examples of freeware tools include Gamebots (Adobbati
et al. 2001) that is a plain interface to a game engine or
F.E.A.R. (Champandard, 2003), which combines own
interface and framework. Neither of them supply more
advanced features like integrated development
environment (IDE), introspection of agent’s variables, log
management, game control, etc.

Basically, a freeware platform that fits the requirements
on fast prototyping of complex behavior of virtual agents
is missing. In this paper, we present the toolkit Pogamut
2, which aims at filling this gap. It extends our previous
work, Pogamut 1, providing these main features: (1)
connection to a virtual environment, (2) auxiliary libraries
– A*, sensory primitives, memory management, etc., (3)
IDE with agent specific support for debugging, (4) built-
in decision-making system (DMS) POSH (Bryson, 2001),
(5) support for experiments defined by declarative rules.

Pogamut 2 is designed for research projects concerning
investigating behavior of human-like virtual agents and
the education of undergraduate students. Pogamut 2 uses
the environment of the Unreal Tournament 2004 (UT04)4

1 Engenuity Technologies Inc.: AI-Implant.
URL: http://www.ai-implant.com [15. 6. 2007]

2 Softimage: XSI.
URL: http://www.softimage.com [15. 6. 2007]

3 X-AItment GmbH: X-Aitment.
URL: http://www.x-aitment.net [15. 6. 2007]

4 Epic Games: UnrealTournament 2004.
URL: http://www.unrealtournament.com [15. 6. 2007]

mailto:rudolf.kadlec@gmail.com
http://www.unrealtournament.com/
http://www.softimage.com/
http://www.ai-implant.com/

as a 3D simulator – a commercial5 first-person shooter
game. UT04 offers an adjustable 3D engine with a map
editor and a lot of different locations, a library of
predefined items, and modes with different rules of play.
Use of UT04 as the 3D simulator can make the platform
interesting also for the community of game players as we
can find examples of the players experimenting with their
favorite games6.

We have already released the first stable version of
Pogamut 2 which is available for download on our
website7 in the form of an installer. It offers all
functionality discussed later plus examples and tutorials.
The work on Pogamut 2 still continues. We are presently
finishing some advanced features; specifically time-line
debugging (review of agent’s decision and surrounding
environment during some interval of time), integrated
map of the environment (3D map for visualization of
multiple agents at once), and video tutorials.

GOALS

The Pogamut 2 attains to the following goals:
1. Extensibility and modularity – the code is modular and

open-source thus allowing connection of different
DMS (e.g. SOAR8) and extending the IDE.

2. User-friendly development environment – the IDE
supports implementation, debugging and experiments.

3. Parallelization – client-server architecture separates
UT04 and DMS, thus the load can be divided among
multiple machines.

4. Steep learning curve – examples and video tutorials
decrease starting time, this is vital for educational
purposes.

5. Easy model validation – experiments allows for
evaluation of the implemented model using rule based
engine JBoss Rules 9

We remark that the commercial tools (AI-Implant,
SoftImage, Xaitment) fulfill these requirements but none
of the freeware tools does (GameBots, F.E.A.R). Pogamut
2 is intended to fill this gap.

POGAMUT 2 - ARCHITECTURE

Pogamut 2 integrates six main modules: (1) UT04, (2)
Gamebots2004 (GB04), (3) Parser, (4) Client, (5) IDE
and (6) DMS.
5 The license costs about 15$ (more information can be found

at http://www.unrealtournament.com)
6 Bots United, the bot community.

URL: http://www.bots-united.com
7 Pogamut homepage

URL: http://artemis.ms.mff.cuni.cz/pogamut
8 University of Michigan: SOAR

URL: http://sitemaker.umich.edu/soar/home [15. 6. 2007]
9 Jboss Rules, JBoss division of Red Hat.

 URL: http://www.jboss.com/products/rules [15. 6. 2007]

Unreal Tournament 2004 is a commercial game, which is
used as an environment for agents. It allows for
connection of about 20 agents at once and contains an
environment editor. UT04 is built on top of the Unreal
Engine which provides open scripting language Unreal
Script. This provides a way for extending the game with
add-ons like the GB04, user-designed items, objects,
animations etc.

The Gamebots 2004 (GB) is a built-in server in the UT04,
which takes care of the communication between a DMS
and a virtual agent’s avatar. Gamebots 2004 is our
adaptation of the original GB, which was designed for the
UT99. Additional functionality contains exporting of all
items and navigation points at the beginning of the
connection, automatic ray tracing, smooth movement
along path, commands for replay recording, etc.

The Parser parses strings of the GB04 network protocol,
creates a Java objects from them and sends them towards
the Client. Its purpose is to optimize the communication
between the GB04 and the Client; therefore it decreases
the network load and allows for dozens of agents to be
connected to the server at once.

The Client is a package of Java classes. It provides (a) a
memory storing variety of sensory information, (b)
commands, i.e. functional primitives for the control of
virtual agent’s body, (c) an inventory to manage items the
agent picks up, (d) methods for movement around the
map that are solving navigation issues, including A*.

IDE is made as a plug-in for NetBeansTM development
environment10. It helps a developer during all important

10 Sun Microsystems, Inc: Netbeans.
URL: http://www.netbeans.org [15. 6. 2007]

Fig. 1. Platform itself is composed of five main parts:
UT2004, GB2004, Parser, Client and IDE. GB2004,
Parser and Client cover the communication between

DMS and an agent’s avatar in the game. IDE serves for
the development, debugging and experiments. It can also

be used to observe multiple virtual agents in the
simulation at once. Pogamut comes with DMS POSH, but

various other DMSs can be easily connected.

 DMSServer

Unreal
Tournament

2004

Client

Workstation DMS

Pogamut
platform

GameBots2004 Parser IDE

http://www.netbeans.org/
http://www.jboss.com/products/rules
http://sitemaker.umich.edu/soar/home

stages of work – development, debugging and
experimenting. The IDE contains:

• Scripting of agent’s behavior (Java, Python,
POSH).

• Access to the library of virtual agents.
• Tools for debugging – an inspector of internal

agent’s variables, a viewer of agent’s memory,
viewers of logs of the DMS and communication,
etc.

• Set of methods supporting scripted experiments,
in which a user can define initial configuration,
terminating conditions and interesting events to
be logged.

HOW TO WORK WITH POGAMUT 2

Creating a virtual agent has these stages: (1) inventing the
model, (2) implementing the model, (3) debugging the
implementation, (4) tuning the parameters of the model
and (5) experiments.

The IDE of Pogamut 2 was purposely designed to support
the latter four of these stages. In this section we will
illustrate how exactly Pogamut 2 achieves this.

Implementing the model

The platform currently supports the development of DMS
in Java, Python and behavior-oriented language POSH
(Bryson, 2001). The developer is using a high level API
and doesn’t need to care about the GB network protocol.
A snapshot of a Java code demonstrating how API is used
follows. The Java object memory provides access to the
sensory primitives, while the Java object body accesses
action primitives.

// do you see enemy? -> start shooting // hunt the
enemy
if (memory.getSeeAnyEnemy() &&
 memory.hasAnyLoadedWeapon())

{ statePursue(); return; }
// are you shooting? -> stop shooting, you’ve lost
your target

Fig. 2. A screenshot of the IDE during the debugging and the development

2 3

4

1

5

6

if (memory.getIsShooting())
{ body.stopShoot(); return; }

// are you being shot? -> turn around - try to find
your enemy
if (memory.getIsBeingDamaged())

{ body.turnHorizontal(355);
 return; }

The next example illustrates the control logic of a
particular agent written in POSH. Basically, the agent is
driven by three if-then rules: if see_enemy &
hasBetterEapon then doRearm; if see_enemy & armed
then engageEnemy; if stuck then jump.

(drives
 ((rearm

(trigger (
(seeEnemy)
(hasBetterWeapon)

))
doRearm

))
 ((engage

(trigger (
(seeEnemy)
(armed)

))
engageEnemy

))
 ((stuck

(trigger (
(stuck)

))
jump

))
)

The IDE also offers an editor with a project management
(Fig. 2, window 4), syntax highlighting and code
completion.

Debugging

Debugging using the IDE is composed of several parts.
• A list of running servers and agents (2.1) helps

with a management of multiple agents.
• Agent� s properties (2.3) give a quick access to

variables common for all agents, e.g. position,
velocity, orientation, health.

• Logs (2.5) display logged messages from
communication between GB and Parser, logs
from the platform and agent� s logs (dedicated to
the agent� s DMS).

• The UT04 game server can be remotely
administrated from (2.6).

The IDE also offers an option to change the speed of the
simulation or even stop it. This feature helps the designer
to consult logs on-line.

Tuning the parameters

Behavior models are typically quite sensitive to the
settings of various parameters. The IDE allows the
developer to set those parameters through the
Introspection window without the need of restarting the
agent (Fig 3.).

Experiments

Evaluation of the model is allowed by definition of the
experiments in the IDE. This part of the IDE enables to
model the intended situations and run it multiple times.
The idea behind experiments is to allow a programmer to
separate agent’s logic and various test cases, similarly to
so-called unit testing in Extreme Programming.
Every experiment is defined by a set of if-then rules.
Therefore it is possible to define custom actions for
various events that are based on agent’s internal variables.
For processing of if-then rules the JBoss Rules rule
engine is used. It is possible to specify the kind of
environment, the number of agents, their starting
locations and their equipment. The IDE also features
configuring breakpoints during an experiment.
An example of a rule follows. The rule fires whenever the
agent Hunter sees the agent with ID rabbitID and reports
whether Hunter is shooting at this agent

rule "Hunter spots Rabbit"
 when
 hunterMem : AgentMemory(name == "Hunter")

Fig. 3: Example of introspection of agent’s parameters.
All variables annotated with the @PogProp annotation
are shown in the Introspection window and their values

are periodically updated at runtime.

 eval(
 hunterMem.seeEnemy(globals.get("rabbitID")
)
 then
 if (hunterMem.isShooting())
 log.info("Hunter is shooting at the rabbit.")
 else
 log.info("Hunter can see the rabbit but is NOT

 shooting.")
end

DISCUSSION AND WORK IN PROGRESS

As said above, Pogamut 2 is intended for research on
virtual agents and education of undergraduates. We are
going to use it 1) for a research on emotions in action
games, 2) as an educational tool for a course on modeling
behavior of virtual agents taught at our faculty, 3) to
develop specific scenarios for research on spatial
navigation of humans using virtual reality environments.
It is also possible to use the platform for modeling social
interactions, cooperation of multiple agents in 3D
environment, and for design of educational games and
scenarios.

Pogamut’s 2 main benefits are in integrated development
environment, rich library of predefined methods for agent
design and possibility to create agents using reactive
planner POSH. Nevertheless there are some limitations.
Maximum of twenty agents can be connected to the server
at once, so it is not designed for mass simulations.
Another issue is the flow of the time; the speed of the
simulation can not be adjusted, which makes the platform
impractical for evolutionary computing.

There are some additional features we are going to add
soon. Those include more scripting languages and
different DMSs (e.g. SOAR). Another feature will be
a timeline. It will enable recording the simulation and
then replaying what happened in the game simultaneously
with listing the logs of the DMS.

CONCLUSION

We introduced a freeware platform for the development
of virtual agents in a complex virtual world. The platform
uses UT04 as the 3D simulator. The agent is provided
with sensors, effectors, memory, inventory and the notion
of the environment. The integrated development
environment (IDE) features a variable inspector, viewers
for logs, an agent’s inspector, an agent’s sensory memory,
a script editor and others. Integrated together, Pogamut 2
forms a working platform suitable for rapid development
of virtual agent’s behavior.

The workflow with the tool is intended to be 5-staged:
invention of the model (specification), implementation of
the model, debugging the model, tuning it, and
experimenting with it. The later four are supported by the
IDE. Hence a developer is spared of tedious background
work behind the communication, memory organization,
representation of the objects in the game, etc. and can
focus directly on his or her main problem.

Brought all together the main advantages of our platform
are (1) freeware license, (2) complex tools that facilitate
the development of virtual agents (IDE, debugging, etc.),
and (3) easy work with the platform, which is supported
by a set of tutorials and videos. Moreover, the platform is
well documented and the platform architecture is
designed to support further extensions. We believe that
with all these features our platform fulfills the
requirements on fast prototyping of complex behavior of
virtual agents and fills the gap left by other freeware
platforms.

Acknowledgements

This work is supported by the grant GA UK
1053/2007/A-INF/MFF and partially supported by grants
GA UK 351/2006/A-INF/MFF and "Information Society"
1ET100300517.

REFERENCES

Adobbati, R., Marshall, A. N., Scholer, A., and Tejada, S. 2001
"Gamebots: A 3d virtual world test-bed for multi-agent research." In:
Proceedings of the 2nd Int. Workshop on Infrastructure for Agents,
MAS, and Scalable MAS (Montreal, Canada), URL:
http://www.planetunreal.com/gamebots [15. 6. 2007]

Aylett R.S., Louchart S., Dias J., Paiva A., Vala M. 2005. “FearNot!
– An Experiment in Emergent Narrative.” In Proceedings of
Intelligent Virtual Agents, LNAI 3661, Springer, 305–316

Bryson, J.J. 2001 Inteligence by design: Principles of Modularity
and Coordination for Engineering Complex Adaptive Agent. PhD
Thesis, (MIT, Department of EECS, Cambridge, MA).

Cavazza, M., Charles, F., Mead, S.J. 2004. "Developing Re-usable
Interactive Storytelling Technologies." In Proceedings of the 2004 of
IFIP World Computer Congress (Toulouse, France).

Champandard, A.J. 2003: AI Game Development: Synthetic
Creatures with Learning and Reactive Behaviors. New Riders. URL:
http://fear.sourceforge.net [15. 6. 2007]

Hodges, L.F., Anderson, P., Burdea, G.C., Hoffman, H.G.,
Rothbaum, B. O. 2001. "Treating Psychological and Physical
Disorders with VR." In Proceedings of the 2001 of Computer
Graphics and Applications, IEEE 2001, 25-33.

Mateas, M., Stern, A. 2003. "Façade: An Experiment in Building a
Fully-Realized Interactive Drama." In Proceedings of the 2003 of
Game Developers Conference.

http://fear.sourceforge.net/

