
UT2004 bots made easy! 

Lecture 5 – Navigation 

Faculty of mathematics and physics 
Charles University in Prague 
24st March 2015 



 Fill the short test for this lessons 
 5 minutes limit 
 XXX 

 
 XXX 

 



Navigating inside UT2004 
 

1. Big Picture 
2. World Abstraction 
3. Navigation 

 
 







Navigating inside UT2004 
 

1. Big Picture 
2. World Abstraction 
3. Navigation 

 
 



Objects (IWorldObject): 
 Player 
 Item 
 NavPoint 
 Self 
 IncomingProjectile 

Events (IWorldEvent): 
 HearNoise & HearPickup 
 BotDamaged & BotKilled 
 PlayerDamaged & PlayerKilled, 
 Bumped 
 GlobalChat 

 Use modules, listeners and Pogamut helper classes! 
 this.players, this.items, this.info … 
 MyCollections, DistanceUtils 

 
if (this.players.canSeePlayers()) {  …  } 
 
@EventListener(eventClass = GlobalChat.class) 
public void chat(GlobalChat chatEvent) { 
 … 
} 



#Navpoints in the map = 100 – 5000 



Classes of interest: 
NavPoint, NavPointNeighbourLink, Item 
ILocated, Location, DistanceUtils 
ItemType, ItemType.Category 
ItemDescriptor 

Methods of interest: 
this.items.getAllItems(ItemType) 

this.descriptors.getDescriptor(ItemType) 

this.world.getAll(NavPoint.class) 

this.world.getAll(Item.class) 

NavPoint.getOutgoingEdges() 

NavPoint.getIncomingEdges() 

!!! 



 NavPoint types 
 JumpPad 
 Lift 
 Teleport 
 Door 
 PlayerStart 
 SnipingSpot 
 InventorySpot 
 … 

 

 Link flags 
 Walk 
 Jump 
 Lift 
 Door 
 DoubleJump 
 … 



Navigating inside UT2004 
 

1. Big Picture 
2. World Abstraction 
3. Navigation 

 
 



Navigation steps: 
1. Decide where to go 
2. Plan the path (list of navpoints) 
3. Follow the path 

Don’t worry it’s already wrapped up  

• Handle jumps&lifts along the way! 
• Do you know right constants? 

• World is non-deterministic, be sure to check 
how the action is executing! 

 => IStuckDetector implementations 



1. Decide where to go (Decision making!) 
 items.getSpawnedItems(ItemType) 

 navPoints.getNavPoints() 

 DistanceUtils.getNearest(…) 

 MyCollections.getRandom(…) 

 fwMap.getNearest(…) 
2. + 3. Plan and follow the path 
 UT2004Navigation (this.navigation) 
 



 Pogamut path planner uses Floyd Warshall 
algorithm (O(n3) !) 
 Used by UT2004Navigation 
 Access by this.fwMap 
 FW matrix is auto-initialized 

 
 Methods of interest 
 fwMap.getNearest…(…) 
▪ Works the same as in DistanceUtils, except the 

distance is measured by the path length 
▪ Its ok to “spam” it (e.g. checking all items in each 

step), the nowadays computers can handle it 
 

 



 Complete navigation wrapper 
 UT2004Navigation(…, UT2004PathExecutor, 

FloydWarshallMap, …) (this.navigation) 
 Handles both path planning & path following 
 Can be called repeatedly 
 Contains this.pathExecutor, this.fwMap 

 
 Main methods 
 navigation.navigate(…) 
 navigation.isNavigating() 
 navigation.stopNavigation() 

 
 Uses 
 FloydWarshallMap (this.fwMap) 
 StuckDetectors 
 UT2004PathExecutor 

 
 



 NavigationGraphBuilder 
 Access by this.navBuilder 

 
 Methods of interest 
 navBuilder.removeEdge(…) 
 navBuilder.removeEdgesBetween(…) 

 
 If you use navBuilder in botInitalized 

method, everything will be applied 
automatically 
 Otherwise, call fwMap.refreshPathMatrix() 
▪ O(n3) !! 

 



 Navigation Uses 3 stuck detectors  
 

 AccUT2004TimeStuckDetector(bot, 3000) 
 if the bot does not move for 3 seconds consider it is stuck (check 

small velocity delta) 
 

 AccUT2004PositionStuckDetector() 
 watch over the position history of the bot, if the bot does not move 

sufficiently enough, consider that it is stuck 
 DEFAULT_HISTORY_LENGTH, DEFAULT_MIN_DIAMETER, 

DEFAULT_MIN_Z 
 

 AccUT2004DistanceStuckDetector() 
 counts how many times the bot was getting closer to the target and 

how many times it was getting farther (if it oscillates more than two 
times -> STUCK) 

 
 



 With a FlagListener! Add one with method addStrongNavigationListener 
 

 this.navigation.addStrongNavigationListener( 
   new FlagListener<NavigationState>() { 
      @Override 
      public void flagChanged(NavigationState changedValue){ 
          switch (changedValue) { 
              case STUCK: 
                  break; 
              case STOPPED: 
                  break; 
              case TARGET_REACHED: 
                  break; 
              case PATH_COMPUTATION_FAILED: 
                  break;                       
              case NAVIGATING: 
                  break; 
          } 
      } 
   }); 

 



 UT2004PathExecutor 
 Custom Pogamut path following code 
 Heavily tweaked for UT2004 and game update 

frequency 4 Hz (250 ms per synchronous batch) 
 The good 
 Works decently on non-complex maps 
 You don’t have to do it yourself 

 The bad 
 Has problems handling complex links 
 Spaghetti code 

 

 



 Inside UT2004PathExecutorStuckState 
 Who has detected the stuck 
 Which NavPointNeighboutLink bot failed to traverse 

 Version: 3.5.1-SNAPSHOT and later 
 

this.pathExecutor.getState().addStrongListener( 
 new FlagListener<IPathExecutorState>() { 
  @Override 
  public void flagChanged(IPathExecutorState event) { 
   switch (changedValue.getState()) { 
    case STUCK: 
     UT2004PathExecutorStuckState     
     stuckDetails = 
       (UT2004PathExecutorStuckState) 
       event; 
                 log.info(“STUCK by: “ + 
           stuckDetails.getStuckDetector().getClass() 
                     .getSimpleName() 
                 ); 
     … 
     break; 
    … 
   } 
 } 
}); 

 





 Combination of NavMesh + NavGraph 
 Contains Off-Mesh Connections 
▪ Former NavGraph links that connects non-adjacent 

meshes, which are not completely “within” navmesh 
⇒ All jump links are typically present within the 

“NavMeshGraph” 
 

 NavMeshNavigation 
 Implements IUT2004Navigation 
▪ Same interface as UT2004Navigation 

 Usable only iff NavMesh static data for the concrete 
map is present! 

▪ Check it via navMeshModule.isInitialized() 
 
 



 NavMesh Static Data 
 Expected to be inside ./navmesh folder (project 

root dir) 
 Downloadable from 

svn://artemis.ms.mff.cuni.cz/pogamut/trunk
/project/Addons/UT2004NavMeshTools/04-
NavMeshes  

▪ Text files in the form of <map-name>.navmesh 
 .navmesh file gets combined with NavGraph during 

bot startup and saved within .processed file 
 If you are going to play with navBuilder, you will 

have to tell navMeshModule that you want the 
NavMesh to be reloaded and recombined with your 
changed version of NavGraph 
 



 Correct way of NavMesh reloading 



 NavTesterBot 
 Download template 
 Extend the bot so it endlessly runs between two given points 

▪ Use Respawn command 
 See the “navigation bug sheet” for DM-1on1-Roughinery-FPS 
 Find “bugs” assigned to you (via Task No.) 
 Minimalize each problem to the “shortest” path 
 If the bug is caused by misplaced point/link use navBuilder to fix it 
 Fix at least 1 hard bug within the navigation code 

▪ MUST BE CORRECTLY COMMENTED 
▪ // OLD CODE: 
▪ // PROBLEM: 
▪ // NEW CODE: 
 

 

 10 points 
 Extra 10 points if you manage to fix 3 hard bugs within navigation code 

 
 



 Deciding where to go 
 navPoints.getNavPoint() 
 DistanceUtils… 

 

 Navigation module 
 this.navigation.navigate(…) 
 this.navigation.isNavigating() 

 

 Stuck listening 
 this.navigation 
  .addStrongNavigationListener( 
 new FlagListener<NavigationState>() { … })  
 

 Info about the bot 
 this.info.getLocation() 
 this.info.atLocation(ILocated) 
 

 



 
 

 
Via e-mail: 
 Subject 

 “Pogamut homework 2015 – Assignment X” 
 Replace ‘X’ with the assignment number and the subject has to be without 

quotes of course 
 …or face -2 score penalization 

 

 To 
 jakub.gemrot@gmail.com 

 Jakub Gemrot (Tuesday practice lessons) 
 

 

 Attachment 
 Completely zip-up your project(s) folder except ‘target’ directory and IDE 

specific files (or face -2 score penalization) 
 

 Body 
 Please send us information about how much time it took you to finish the 

assignment + any comments regarding your implementation struggle 
 Information won’t be abused/made public 
 In fact it helps to make the practice lessons better 

 

 Don’t forget to mention your full name!  
 
 

 
 

mailto:jakub.gemrot@gmail.com


 
 

  We do not own the patent of perfection (yet…) 
 

 In case of doubts about the assignment, 
tournament or hard problems, bugs don’t 
hesitate to contact us! 

 

 Jakub Gemrot (Tuesday practice lessons) 
 jakub.gemrot@gmail.com 

 

mailto:jakub.gemrot@gmail.com
mailto:jakub.gemrot@gmail.com

	Pogamut 3
	Warm Up!
	Today’s menu
	Big Picture�Already covered
	Big Picture�Today
	Today’s menu
	Pogamut World Abstraction�Basics
	UT2004 World Abstraction�Navigation graph
	UT2004 World Abstraction�Underlaying classes – low level API
	UT2004 World Abstraction�NavPoint/NeighbourLink types
	Today’s menu
	Navigation�Step by step
	Navigation�Step by step
	Navigation�FloydWarshallMap
	Navigation�UT2004Navigation
	Navigation�Modifying the navigation graph
	Navigation�StuckDetectors
	Navigation�Listening for navigation events
	Navigation�Path following hell
	Navigation�Stuck detection details
	NavMesh Navigation�The most reliable navigation
	NavMesh Navigation�The most reliable navigation
	NavMesh Navigation�The most reliable navigation
	NavMesh Navigation�The most reliable navigation
	Assignment 5�Navigation Bot
	Assignment 5�Cheatsheet
	Send us finished assignment
	Questions?�I sense a soul in search of answers…

