
UT2004 bots made easy!

Faculty of Mathematics and Physics
Charles University in Prague
10th March 2015

Workshop 3 – Running Around Tag! Tournament

 Start downloading the TagBot project
template (~75MB) in advance … now

 Start copying C:\Program files (x86)\Unreal
Anthology\UT2004 into D:\UT2004

 We will need to modify UT2004 later during the workshop…

 Fill the short test for this lessons
 7 minutes limit
 http://goo.gl/PFCTVb

 Permanent link
 https://docs.google.com/forms/d/1p5Mw5ikEkDXf

SIvtl4N94veXA-yooyzw-I7XGY0vFYE/viewform

http://goo.gl/PFCTVb
https://docs.google.com/forms/d/1p5Mw5ikEkDXfSIvtl4N94veXA-yooyzw-I7XGY0vFYE/viewform
https://docs.google.com/forms/d/1p5Mw5ikEkDXfSIvtl4N94veXA-yooyzw-I7XGY0vFYE/viewform

private UnrealId followTarget = null;

@EventListener(eventClass = GlobalChat.class)
protected void handleChat(GlobalChat event) {
 if (event.getText().contains("hi"))
 body.getCommunication()
 .sendGlobalTextMessage("Hi");
 if (event.getText().contains(“start follow")) {
 followTarget = event.getId();
 }
 if (event.getText().contains(“stop follow”))
 followTarget = null;
}

public void logic() throws PogamutException {
 if (followTarget != null) {
 Player followPlayer = players
 .getPlayer(followTarget);
 if (info.atLocation(followPlayer.getLocation()) &&
 !followPlayer.isVisible()) {
 move.turnHorizontal(30);
 } else {
 move.moveTo(followPlayer);
 }
 }
}

private Boolean following = false;
private Boolean jumping = false;
private Boolean searching = false;
private Location search_location;
private Location last_location;

@EventListener(eventClass = GlobalChat.class)
protected void handleChat(GlobalChat event) {
 if (event.getText().contains("hi"))
 body.getCommunication()
 .sendGlobalTextMessage("Hey you");
 if (event.getText().contains("follow")) {
 this.following = !this.following;
 this.searching = false;
 }
 if (event.getText().contains("jump"))
 this.jumping = !this.jumping;
}

public void logic() throws PogamutException {
 if (this.following) {
 if (this.players.canSeePlayers()) {
 Player pl =
 this.players.getNearestVisiblePlayer();
 this.search_location = pl.getLocation();
 this.searching = true;
 this.move.moveTo(pl);
 } else {
 if (searching) {
 this.move.moveTo(this.search_location);
 if (this.getInfo()
 .atLocation(this.search_location))
 this.searching = false;
 } else
 this.move.turnHorizontal(30);
 }
 }
 if (this.jumping) act.act(new Jump());
}

<<< We’re going to dive into PogamutUT2004 platform
… technically.

>>> Great, just another proprietary library…

<<< Correct, but:
<<< 1) you have to deal with them everywhere,
<<< 2) platform is created around universal principles,

you will learn what to look for in other game
engines.

>>> Really… [skeptical face]

<<< We can only show you the door, you are the one
who has to go through it… ;-)

1. Big Picture
2. How to see
 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge
 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. How to think
 Intelligence by design

6. Tag! Tournament Announcement

Perception (P)

Memory (S)

Action (A)

1. Part of environment state E is exported to the agent p(E) = P

Environment state (E)

2. Agent performs action-selection: f(P,S) -> AxS

3. Actions are carried out in the environment: a(An,E) -> E

What if we dive deeper?

1. Big Picture
2. How to see
 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge
 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. How to think
 Intelligence by design

6. Tag! Tournament Announcement

 IWorldObjects
 Self, Player, Item, NavPoint, …
 this.world.getSingle(Self.class)
 this.world.getAll(Player.class)
 this.world.getAll(Item.class)
 this.world.getAll(NavPoint.class)

 Agent modules
 AgentInfo ~ this.info
 Players ~ this.players
 Items ~ this.items
 NavPoints ~ this.navPoints

 Location, Rotation, Velocity (explained later on)

 IWorldObjects
 Self, Player, Item, NavPoint, …
 All objects have unique UnrealId
▪ Each unique id has single UnrealId instance

 Each unique object has single instance
▪ Agent modules are respecting this, no sneaky clone()s

What does it mean for Collections?
=> can be used in Set<UnrealId>, Set<Player>
=> can be used as key in Map<UnrealId, ?> ,
Map<Player, ?> without performance hit

 IWorldObjects
 Self, Player, Item, NavPoint, …
 All objects have unique UnrealId
▪ Each unique id has single UnrealId instance

 Each unique object has single instance
▪ Agent modules are respecting this, no sneaky clone()s

What does it mean for object updates?
=> once obtained instances are auto-updated
=> there is no history

 IWorldObjects ~ low-level API
 this.world.getSingle(Self.class)

▪ Info about your bot
 this.world.getAll(Player.class)

▪ Returns Map<UnrealId, Player>
▪ All players encountered during the session

 this.world.getAllVisible(Player.class)
▪ Returns Map<UnrealId, Player>
▪ All players currently visible (in bot’s FOV)

 this.world.getAll/Visible(Item.class)
 this.world.getAll/Visible(NavPoint.class)
 …

 Agent modules ~ low-level API façades
 AgentInfo ~ this.info ~ Self
 Players ~ this.players ~ Player(s)
 Items ~ this.items ~ Item(s)
 NavPoints ~ this.navPoints ~ NavPoint(s)

 Advantages:
1. List of methods with JavaDoc

 => Easier to way to explore Pogamut API
2. Comprehensibly named methods

 => Easier to read & understand the code

 Location
 X, Y, Z (world space)
 can be used as “vector”

▪ add(), sub(), scale(), getDistance(), dot(), cross()
▪ rotateXY/XZ/YZ()

 Rotation
 Pitch (XZ), Yaw (XY), Roll (YZ)

 Velocity
 X, Y, Z vector
 Length is speed in UT units (1UT ~ 1cm)

 All objects are immutables
=> Can be used in Set, Map

1. Big Picture
2. How to see
 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge
 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. How to think
 Intelligence by design

6. Tag! Tournament Announcement

 CommandMessages
 Move, Jump, Dodge
 this.act.act(new Move()…)

 this.act.act(new Jump()…)
 this.act.act(new Dodge()…)

 Agent module
 AdvancedLocomotion ~ this.move

 CommandMessages ~ low-level API
 Move

▪ You can specify 1 location in advance
▪ You can specify focus (where to look while moving), i.e.,

can be used for strafing
 Jump

▪ Can be used for double-jumps as well
 Dodge

▪ Can be used for quick direct jump to arbitrary location

 Agent modules ~ low-level API façade
 AdvancedLocomotion ~ this.move

 All commands wrapped into methods
▪ move.moveTo(), move.strafeTo(), move.jump(), …

 Some simple algebra wrapped as well
▪ move.dodgeLeft(), move.dodgeRight(), …

1. Big Picture
2. How to see
 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge
 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. How to think
 Intelligence by design

6. Tag! Tournament Announcement

 Custom “game-mode” for UT2004
 Two roles:

1. Seeker (having “it”)
2. Runner or Prey

 Seeker has to chase runners to pass „it“
 After passing “it” the former seeker is immune to

the new seeker
 this.tag agent module
 Custom map: DM-TagMap
 Simple rectangle map, no obstacles
 procedurally decsribed by TagMap static methods

1. Big Picture
2. How to see
 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge
 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. How to think
 Intelligence by design

6. Tag! Tournament Announcement

Perception (P)

Memory (S)

Action (A)

1. Part of environment state E is exported to the agent p(E) = P

Environment state (E)

2. Agent performs action-selection: f(P,S) -> AxS
3. Actions are carried out in the environment: a(An,E) -> E

Behavior Oriented Design
 by Joanna J. Bryson (UK)
 http://www.cs.bath.ac.uk/~jjb/web/bod.html

1. Specify top-level decision
a) Name the behaviors that the bot should do
b) Identify the list of sensors that is required to perform

the behavior
c) Identify the priorities of behaviors
d) Identify behavior switching conditions

2. Recursion on respective behaviors until
primitive actions reached

http://www.cs.bath.ac.uk/~jjb/web/bod.html

1. Big Picture
2. How to see
 Self, Player, Location, Rotation, Velocity
 this.info, this.players

3. How to move
 Move, Jump, Dodge
 this.move

4. Tag! Game
 Rules, Map
 TagMap

5. How to think
 Intelligence by design

6. Tag! Tournament Announcement

 4 bots
 1 Seeker, 3 Runners (1 of them will be immune…)

 Random groups
 Tournament will be held next week, only bots

submitted until Saturday 15.3.2014, 9:00 will
participate

 No shooting allowed, no bot speed
reconfigurations allowed

 The best 6 bots from Tag! 2014 will participate in
the tournament
 You will have a chance to test your bots against them

in advance

 Download the TagBot project template
 Copy map/DM-TagMap.ut2 into UT2004/Maps

folder
 Alter
UT2004/System/startGamebotsDMServer.bat
replacing DM-TrainingDay with DM-TagMap

 Implement both TagBot roles
 Seeker ~ 5 points
 Runner ~ 5 points

 Implementations having one role only won’t be
accepted (~ 0 points)

 Note that there are two “main” Java files in
the project

 TagBot
 Bot template you have to finish
 DO NOT ALTER ITS main METHOD!

 TagGame
 Class that starts the match between 4 your

bots
 Use this to test your bot

 Your bot should recognize 3 stages of chasing

 Early-stage
 You are really far from your target
⇒ You have to quickly shorten this distance
⇒ Use rough double-dodges

 Mid-stage
 You are trying to corner your target
⇒ Be careful what commands you’re issuing, you probably

want to avoid “straight” running to your target

 Final-stage
 You are near your target
⇒ You must take chances by doing final dodge-tag
⇒ You might want to distinguish between “corner”, “side

wall” and “open space” situations here

 Be sure not to pursue single target for a long
time …
 If you are unable to get from early->mid

stage for a long time
 If you are unable to get from mid->final

stage for a long time
 If your target manages to escape you and

you switch from final->mid stage again

 Be sure to be aware who got tagged … and
not only by you!
 If someone got tagged, there is a good

chance you can tag him as well
 You can even try to count how much time

it was needed to tag someone to be aware
of the “skill” of your opponents

move.strafeTo(chasingLocation, escapeePlayer)
 You should fix your focus to your prey while chasing
 Can be also used to “look around” during the chase, but

that requires timing and won’t probably work well

move.dodge(chasingDirectionVector, false/true)
 If your prey is near, you can try to quick dodge to it
 This will even work well during early stage of chase to

quickly shorten the distance between you and your prey
 Be careful though as you might actually worsen your

situation during final-stage of tagging as you can “miss
dodge” your target

 False/True switches between Single/Double dodge
modes

 Your bot should try not to get cornered
 Your escape strategies typically distinguishes between 3 kinds of

situations
 Corner

 You are in the corner
⇒ Try quick successive double dodges or double jumps
⇒ Then try to run for open-space position

 Side-wall
 Depending on the position of your chaser you should again
⇒ Try quick successive double dodges or double jumps
⇒ Then try to run for open-space position Open space

 Open-space
 You have a lot of space around you
⇒ You should try to run in circles, but keep an eye on your chaser …

you always have to decide which kind of circle-run you want to
perform (clockwise / counterclockwise) preferably switching
between those two as required by the situation

move.strafeTo(escapeLocation, chaserPlayer)

 Always use strafing and focus on the chaser to
be sure to have up-to-date info about its
position.

 Suitable for circle-runs

move.dodge(escapeDirectionVector, true)

 If in peril, try to perform double-dodge

move.doubleJump()

 … or double jump

 Check the folder TagBot/tournament
 There are batch files to execute tournament

matches
 match-best-2014.bat

 Performs match between the first 4 bots of
the Tag! 2014

 match-123.bat
 Performs match between your bot and 1st,

2nd and 3rd bot of Tag! 2014
 match-456.bat

 Performs match between your bot and 4th,
5th and 6th bot of Tag! 2014

 WARNING! You have to edit batch files first,
to supply correct UT2004_HOME directory

 Alter the line
 set UT2004_HOME=d:\Games\UT2004-Devel

 To match your environment, e.g.
 set UT2004_HOME=c:\UT2004

 WARNING! Execution of the batch file might
override you bot/server ports within
UT2004_HOME\System\GameBots2004.ini
 You might bump into “connection refused” exceptions

when trying to run your bot from TagGame of the
template project

 Just restore original values within the
GameBots2004.ini file, and restart a dedicated
server:

 [GameBots2004.BotDeathMatch]
 BotServerPort=3000
 ControlServerPort=3001
 ObservingServerPort=3002

 Check the folder TagBot/tournament-
videos

 There are several videos that might inspire
you for coding Seeker/Runner behaviors

Via e-mail:
 Subject

 “Pogamut homework 2014 – Assignment X”
 Replace ‘X’ with the assignment number and the subject has to be without

quotes of course
 …or face -2 score penalization

 To
 jakub.gemrot@gmail.com

 Jakub Gemrot (Tuesday practice lessons)

 Attachment
 Completely zip-up your project(s) folder except ‘target’ directory and IDE

specific files (or face -2 score penalization)

 Body
 Please send us information about how much time it took you to finish the

assignment + any comments regarding your implementation struggle
 Information won’t be abused/made public
 In fact it helps to make the practice lessons better

 Don’t forget to mention your full name!

mailto:jakub.gemrot@gmail.com

 We do not own the patent of perfection (yet…)

 In case of doubts about the assignment,
tournament or hard problems, bugs don’t
hesitate to contact us!

 Jakub Gemrot (Tuesday practice lessons)
 jakub.gemrot@gmail.com

 Michal Bída (Monday practice lessons)
 michal.bida@gmail.com

mailto:jakub.gemrot@gmail.com
mailto:jakub.gemrot@gmail.com
mailto:michal.bida@gmail.com
mailto:michal.bida@gmail.com
mailto:michal.bida@gmail.com
mailto:michal.bida@gmail.com

	Pogamut 3
	Assignment 3�Setup
	Warm Up!
	Assignment 2 Revisited�Console/FollowBot
	Assignment 2 Revisited�Console/FollowBot
	Motivation� >>> Why am I sitting here?
	Today’s menu
	Big Picture
	Big Picture
	Big Picture�Today
	Today’s menu
	How to see?�Sensors – Body state, Vision
	How to see?�Sensors – Body state, Vision
	How to see?�Sensors – Body state, Vision
	How to see?�Sensors – Body state, Vision
	How to see?�Sensors – Body state, Vision
	How to see?�Sensors – Body state, Vision
	Today’s menu
	How to move?�Actions
	How to move?�Actions
	How to move?�Actions
	Today’s menu
	Tag! Game�Children play
	Today’s menu
	How to think?�Intelligence by design
	How to think?�Intelligence by design
	Today’s menu
	Tag! Tournament�Chance to score extra points!
	Assignment 3
	Assignment 3
	Assignment 3�Cheat sheet – Strategy – Catcher / Chaser
	Assignment 3�Cheat sheet – Strategy – Catcher / Chaser
	Assignment 3�Cheat sheet – Strategy – Catcher / Chaser
	Assignment 3�Cheat sheet – Movement – Catcher / Chaser
	Assignment 3�Cheat sheet – Strategy – Runner / Escapee / Prey
	Assignment 3�Cheat sheet - Movement – Runner / Escapee / Prey
	Assignment 3�Extra Tournament Files
	Assignment 3�Extra Tournament Files
	Assignment 3�Extra Tournament Files
	Assignment 3�Extra Tournament Videos
	Send us finished assignment
	Questions?�I sense a soul in search of answers…

