Uses of Class
math.geom2d.line.AbstractLine2D

Packages that use AbstractLine2D
math.geom2d.line Implementations of 'linear shapes', i.e. 
 

Uses of AbstractLine2D in math.geom2d.line
 

Subclasses of AbstractLine2D in math.geom2d.line
 class InvertedRay2D
          Inverted ray is defined from an origin and a direction vector.
 class LineArc2D
          LineArc2D is a generic class to represent edges, straight lines, and rays.
 class LineSegment2D
          Line segment, defined as the set of points located between the two end points.
 class Ray2D
          Ray, or half-line, defined from an origin and a direction vector.
 class StraightLine2D
          Implementation of a straight line.
 

Methods in math.geom2d.line that return AbstractLine2D
abstract  AbstractLine2D AbstractLine2D.clone()
          Ensures public declaration of clone(), and ensures valid return type.
 AbstractLine2D AbstractLine2D.getSubCurve(double t0, double t1)
          Returns a new AbstractLine2D, which is the portion of this AbstractLine2D delimited by parameters t0 and t1.
abstract  AbstractLine2D AbstractLine2D.transform(AffineTransform2D transform)
           
 

Methods in math.geom2d.line that return types with arguments of type AbstractLine2D
 CurveSet2D<? extends AbstractLine2D> AbstractLine2D.clip(Box2D box)
           
 Collection<? extends AbstractLine2D> AbstractLine2D.getContinuousCurves()
           
 Collection<? extends AbstractLine2D> AbstractLine2D.getSmoothPieces()
          Return the intersection points of the curve with the specified line.
 

Methods in math.geom2d.line with parameters of type AbstractLine2D
static Point2D AbstractLine2D.getIntersection(AbstractLine2D l1, AbstractLine2D l2)
          Returns the unique intersection of two straight objects.
static boolean AbstractLine2D.isColinear(AbstractLine2D line1, AbstractLine2D line2)
          Test if the two linear objects are located on the same straight line.
static boolean AbstractLine2D.isParallel(AbstractLine2D line1, AbstractLine2D line2)
          Test if the two linear objects are parallel.
 



Copyright © 2012 AMIS research group, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic. All Rights Reserved.